Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebecca Herzog is active.

Publication


Featured researches published by Rebecca Herzog.


Nephrology Dialysis Transplantation | 2012

Alanyl–glutamine dipeptide restores the cytoprotective stress proteome of mesothelial cells exposed to peritoneal dialysis fluids

Klaus Kratochwill; Michael Boehm; Rebecca Herzog; Anton Lichtenauer; Elisabeth Salzer; Michael Lechner; Lilian Kuster; Konstantin D. Bergmeister; Andreas Rizzi; Bernd Mayer; Christoph Aufricht

BACKGROUND Exposure of mesothelial cells to peritoneal dialysis fluids (PDF) results in cytoprotective cellular stress responses (CSR) that counteract PDF-induced damage. In this study, we tested the hypothesis that the CSR may be inadequate in relevant models of peritoneal dialysis (PD) due to insufficient levels of glutamine, resulting in increased vulnerability against PDF cytotoxicity. We particularly investigated the role of alanyl-glutamine (Ala-Gln) dipeptide on the cytoprotective PDF stress proteome. METHODS Adequacy of CSR was investigated in two human in vitro models (immortalized cell line MeT-5A and mesothelial cells derived from peritoneal effluent of uraemic patients) following exposure to heat-sterilized glucose-based PDF (PD4-Dianeal, Baxter) diluted with medium and, in a comparative proteomics approach, at different levels of glutamine ranging from depletion (0 mM) via physiological (0.7 mM) to pharmacological levels (8 mM administered as Ala-Gln). RESULTS Despite severe cellular injury, expression of cytoprotective proteins was dampened upon PDF exposure at physiological glutamine levels, indicating an inadequate CSR. Depletion of glutamine aggravated cell injury and further reduced the CSR, whereas addition of Ala-Gln at pharmacological level restored an adequate CSR, decreasing cellular damage in both PDF exposure systems. Ala-Gln specifically stimulated chaperoning activity, and cytoprotective processes were markedly enhanced in the PDF stress proteome. CONCLUSIONS Taken together, this study demonstrates an inadequate CSR of mesothelial cells following PDF exposure associated with low and physiological levels of glutamine, indicating a new and potentially relevant pathomechanism. Supplementation of PDF with pharmacological doses of Ala-Gln restored the cytoprotective stress proteome, resulting in improved resistance of mesothelial cells to exposure to PDF. Future work will study the clinical relevance of CSR-mediated cytoprotection.


Journal of The American Society of Nephrology | 2014

Dynamic O-Linked N-Acetylglucosamine Modification of Proteins Affects Stress Responses and Survival of Mesothelial Cells Exposed to Peritoneal Dialysis Fluids

Rebecca Herzog; Thorsten O. Bender; Andreas Vychytil; Katarzyna Bialas; Christoph Aufricht; Klaus Kratochwill

The ability of cells to respond and survive stressful conditions is determined, in part, by the attachment of O-linked N-acetylglucosamine (O-GlcNAc) to proteins (O-GlcNAcylation), a post-translational modification dependent on glucose and glutamine. This study investigates the role of dynamic O-GlcNAcylation of mesothelial cell proteins in cell survival during exposure to glucose-based peritoneal dialysis fluid (PDF). Immortalized human mesothelial cells and primary mesothelial cells, cultured from human omentum or clinical effluent of PD patients, were assessed for O-GlcNAcylation under normal conditions or after exposure to PDF. The dynamic status of O-GlcNAcylation and effects on cellular survival were investigated by chemical modulation with 6-diazo-5-oxo-L-norleucine (DON) to decrease or O-(2-acetamido-2-deoxy-D-glucopyranosylidene)amino N-phenyl carbamate (PUGNAc) to increase O-GlcNAc levels. Viability was decreased by reducing O-GlcNAc levels by DON, which also led to suppressed expression of the cytoprotective heat shock protein 72. In contrast, increasing O-GlcNAc levels by PUGNAc or alanyl-glutamine led to significantly improved cell survival paralleled by higher heat shock protein 72 levels during PDF treatment. Addition of alanyl-glutamine increased O-GlcNAcylation and partly counteracted its inhibition by DON, also leading to improved cell survival. Immunofluorescent analysis of clinical samples showed that the O-GlcNAc signal primarily originates from mesothelial cells. In conclusion, this study identified O-GlcNAcylation in mesothelial cells as a potentially important molecular mechanism after exposure to PDF. Modulating O-GlcNAc levels by clinically feasible interventions might evolve as a novel therapeutic target for the preservation of peritoneal membrane integrity in PD.


American Journal of Pathology | 2011

Interleukin-1 Receptor-Mediated Inflammation Impairs the Heat Shock Response of Human Mesothelial Cells

Klaus Kratochwill; Michael Lechner; Anton Lichtenauer; Rebecca Herzog; Hans Lederhuber; Christian Siehs; Michaela Endemann; Bernd Mayer; Andreas Rizzi; Christoph Aufricht

Bioincompatibility of peritoneal dialysis fluids (PDF) limits their use in renal replacement therapy. PDF exposure harms mesothelial cells but induces heat shock proteins (HSP), which are essential for repair and cytoprotection. We searched for cellular pathways that impair the heat shock response in mesothelial cells after PDF-exposure. In a dose-response experiment, increasing PDF-exposure times resulted in rapidly increasing mesothelial cell damage but decreasing HSP expression, confirming impaired heat shock response. Using proteomics and bioinformatics, simultaneously activated apoptosis-related and inflammation-related pathways were identified as candidate mechanisms. Testing the role of sterile inflammation, addition of necrotic cell material to mesothelial cells increased, whereas addition of the interleukin-1 receptor (IL-1R) antagonist anakinra to PDF decreased release of inflammatory cytokines. Addition of anakinra during PDF exposure resulted in cytoprotection and increased chaperone expression. Thus, activation of the IL-1R plays a pivotal role in impairment of the heat shock response of mesothelial cells to PDF. Danger signals from injured cells lead to an elevated level of cytokine release associated with sterile inflammation, which reduces expression of HSP and other cytoprotective chaperones and exacerbates PDF damage. Blocking the IL-1R pathway might be useful in limiting damage during peritoneal dialysis.


Electrophoresis | 2014

Equalizer technology followed by DIGE-based proteomics for detection of cellular proteins in artificial peritoneal dialysis effluents

Anton Lichtenauer; Rebecca Herzog; Silvia Tarantino; Christoph Aufricht; Klaus Kratochwill

Peritoneal dialysis effluent (PDE) represents a rich pool of potential biomarkers for monitoring disease and therapy. Until now, proteomic studies have been hindered by the plasma‐like composition of the PDE. Beads covered with a peptide library are a promising approach to remove high abundant proteins and concentrate the sample in one step. In this study, a novel approach for proteomic biomarker identification in PDEs consisting of a depletion and concentration step followed by 2D gel based protein quantification was established. To prove this experimental concept a model system of artificial PDEs was established by spiking unused peritoneal dialysis (PD) fluids with cellular proteins reflecting control conditions or cell stress. Using this procedure, we were able to reduce the amount of high abundant plasma proteins and concentrate low abundant proteins while preserving changes in abundance of proteins with cellular origin. The alterations in abundance of the investigated marker for cell stress, the heat shock proteins, showed similar abundance profiles in the artificial PDE as in pure cell culture samples. Our results demonstrate the efficacy of this system in detecting subtle changes in cellular protein expression triggered by unphysiological stress stimuli typical in PD, which could serve as biomarkers. Further studies using patients’ PDE will be necessary to prove the concept in clinical PD and to assess whether this technique is also informative regarding enriching low abundant plasma derived protein biomarker in the PDE.


Nature Chemical Biology | 2017

A combinatorial screen of the CLOUD uncovers a synergy targeting the androgen receptor

Marco P. Licciardello; Anna Ringler; Patrick Markt; Freya Klepsch; Charles-Hugues Lardeau; Sara Sdelci; Erika Schirghuber; A. Müller; Michael Caldera; Anja Wagner; Rebecca Herzog; Thomas Penz; Michael Schuster; Bernd Boidol; Gerhard Dürnberger; Yasin Folkvaljon; Pär Stattin; Vladimir Ivanov; Jacques Colinge; Christoph Bock; Klaus Kratochwill; Jörg Menche; Keiryn L. Bennett; Stefan Kubicek

Approved drugs are invaluable tools to study biochemical pathways, and further characterization of these compounds may lead to repurposing of single drugs or combinations. Here we describe a collection of 308 small molecules representing the diversity of structures and molecular targets of all FDA-approved chemical entities. The CeMM Library of Unique Drugs (CLOUD) covers prodrugs and active forms at pharmacologically relevant concentrations and is ideally suited for combinatorial studies. We screened pairwise combinations of CLOUD drugs for impairment of cancer cell viability and discovered a synergistic interaction between flutamide and phenprocoumon (PPC). The combination of these drugs modulates the stability of the androgen receptor (AR) and resensitizes AR-mutant prostate cancer cells to flutamide. Mechanistically, we show that the AR is a substrate for γ-carboxylation, a post-translational modification inhibited by PPC. Collectively, our data suggest that PPC could be repurposed to tackle resistance to antiandrogens in prostate cancer patients.


PLOS ONE | 2016

Addition of Alanyl-Glutamine to Dialysis Fluid Restores Peritoneal Cellular Stress Responses – A First-In-Man Trial

Klaus Kratochwill; Michael Boehm; Rebecca Herzog; Katharina Gruber; Anton Lichtenauer; Lilian Kuster; Dagmar Csaicsich; Andreas Gleiss; Seth L. Alper; Christoph Aufricht; Andreas Vychytil

Background Peritonitis and ultrafiltration failure remain serious complications of chronic peritoneal dialysis (PD). Dysfunctional cellular stress responses aggravate peritoneal injury associated with PD fluid exposure, potentially due to peritoneal glutamine depletion. In this randomized cross-over phase I/II trial we investigated cytoprotective effects of alanyl-glutamine (AlaGln) addition to glucose-based PDF. Methods In a prospective randomized cross-over design, 20 stable PD outpatients underwent paired peritoneal equilibration tests 4 weeks apart, using conventional acidic, single chamber 3.86% glucose PD fluid, with and without 8 mM supplemental AlaGln. Heat-shock protein 72 expression was assessed in peritoneal effluent cells as surrogate parameter of cellular stress responses, complemented by metabolomics and functional immunocompetence assays. Results AlaGln restored peritoneal glutamine levels and increased the primary outcome heat-shock protein expression (effect 1.51-fold, CI 1.07–2.14; p = 0.022), without changes in peritoneal ultrafiltration, small solute transport, or biomarkers reflecting cell mass and inflammation. Further effects were glutamine-like metabolomic changes and increased ex-vivo LPS-stimulated cytokine release from healthy donor peripheral blood monocytes. In patients with a history of peritonitis (5 of 20), AlaGln supplementation decreased dialysate interleukin-8 levels. Supplemented PD fluid also attenuated inflammation and enhanced stimulated cytokine release in a mouse model of PD-associated peritonitis. Conclusion We conclude that AlaGln-supplemented, glucose-based PD fluid can restore peritoneal cellular stress responses with attenuation of sterile inflammation, and may improve peritoneal host-defense in the setting of PD.


Pulmonary circulation | 2017

Combined oral administration of L-arginine and tetrahydrobiopterin in a rat model of pulmonary arterial hypertension

Catharina Schreiber; Magdalena Eilenberg; Adelheid Panzenboeck; Max-Paul Winter; Helga Bergmeister; Rebecca Herzog; Julia Mascherbauer; Irene Lang; Diana Bonderman

Alterations in the nitric oxide (NO) pathway play a major role in pulmonary arterial hypertension (PAH). L-arginine (LA) and tetrahydrobiopterin (BH4) are main substrates in the production of NO, which mediates pulmonary vasodilation. Administration of either LA or BH4 decrease pulmonary artery pressure (PAP). A combined administration of both may have synergistic effects in the therapy of PAH. In a telemetrically monitored model of unilateral pneumonectomy and monocrotaline-induced PAH, male Sprague-Dawley rats received either LA (300 mg/kg; n = 15), BH4 (20 mg/kg; n = 15), the combination of LA and BH4 (300 mg/kg, 20 mg/kg; n = 15), or vehicle (control group; n = 10) from day 28 after monocrotaline induction. Therapy was orally administered once daily over consecutive 14 days. LA, BH4, or both equally lowered PAP, increased pulmonary vascular elasticity, restored spontaneous locomotoric activity, prevented body weight loss and palliated small vessel disease of severely pulmonary hypertensive rats. BH4 substitution lowered asymmetric dimethylarginine levels sustainably at 60 min after administration and downregulated endothelial NO synthase mRNA expression. No significant survival, macro- and histomorphologic or hemodynamic differences were found between therapy groups at the end of the study period. Administration of LA and BH4 both mediated a decrease of mean PAP, attenuated right ventricular hypertrophy and small vessel disease in monocrotaline-induced pulmonary hypertensive rats, though a combined administration of both substances did not reveal any synergistic therapy effects in our animal model.


Pediatric Research | 2015

Overexpression of Hsp70 confers cytoprotection during gliadin exposure in Caco-2 cells

Bettina Bidmon-Fliegenschnee; Hans Ch. Lederhuber; Dagmar Csaicsich; Judith Pichler; Rebecca Herzog; Nima Memaran-Dadgar; Wolf-Dietrich Huber; Christoph Aufricht; Klaus Kratochwill

Background:In Celiac disease (CD), cytoskeletal integrity of intestinal cells is disrupted by gliadin exposure. This study investigates the role of heat shock protein (Hsp)70 during cytoskeletal recovery in CD by assessing its induction and effects on junctional proteins.Methods:Using an in-vitro model of CD, cytoskeletal injury and recovery was assessed in gliadin-exposed Caco-2 cells by measuring cellular distribution of ezrin, E-cadherin, and Hsp70 by differential centrifugation. Effects of Hsp70 were tested by an in-vitro repair assay, based on the incubation of injured or recovered cytoskeletal cellular fractions in noncytoskeletal supernatants containing low or high levels of Hsp70, or by transient transfection of Caco-2 cells with Hsp70.Results:Cytoskeletal disruption of ezrin and E-cadherin was demonstrated in gliadin-exposed Caco-2 cells by their significant shift from the cytoskeletal pellet into the noncytoskeletal supernatant fraction. Recovery from gliadin exposure was associated with induction and cytoskeletal redistribution of Hsp70. The in-vitro repair assay delineated direct evidence for HSP-mediated repair by stabilization of junctional proteins by Hsp70. Overexpression of Hsp70 resulted in significantly increased cytoskeletal integrity.Conclusion:Our results establish an essential role of HSP-mediated cytoskeletal repair in Caco-2 cells during recovery from in-vitro gliadin exposure.


BioMed Research International | 2015

Senescence-Associated Changes in Proteome and O-GlcNAcylation Pattern in Human Peritoneal Mesothelial Cells.

Rebecca Herzog; Silvia Tarantino; András Rudolf; Christoph Aufricht; Klaus Kratochwill; Janusz Witowski

Introduction. Senescence of peritoneal mesothelial cells represents a biological program defined by arrested cell growth and altered cell secretory phenotype with potential impact in peritoneal dialysis. This study aims to characterize cellular senescence at the level of global protein expression profiles and modification of proteins with O-linked N-acetylglucosamine (O-GlcNAcylation). Methods. A comparative proteomics analysis between young and senescent human peritoneal mesothelial cells (HPMC) was performed using two-dimensional gel electrophoresis. O-GlcNAc status was assessed by Western blot under normal conditions and after modulation with 6-diazo-5-oxo-L-norleucine (DON) to decrease O-GlcNAcylation or O-(2-acetamido-2-deoxy-D-glucopyranosylidene) amino N-phenyl carbamate (PUGNAc) to increase O-GlcNAcylation. Results. Comparison of protein pattern of senescent and young HPMC revealed 29 differentially abundant protein spots, 11 of which were identified to be actin (cytoplasmic 1 and 2), cytokeratin-7, cofilin-2, transgelin-2, Hsp60, Hsc70, proteasome β-subunits (type-2 and type-3), nucleoside diphosphate kinase A, and cytosolic 5′(3′)-deoxyribonucleotidase. Although the global level of O-GlcNAcylation was comparable, senescent cells were not sensitive to modulation by PUGNAc. Discussion. This study identified changes of the proteome and altered dynamics of O-GlcNAc regulation in senescent mesothelial cells. Whereas changes in cytoskeleton-associated proteins likely reflect altered cell morphology, changes in chaperoning and housekeeping proteins may have functional impact on cellular stress response in peritoneal dialysis.


Cell Stress & Chaperones | 2013

GSK-3β inhibition protects mesothelial cells during experimental peritoneal dialysis through upregulation of the heat shock response.

K. Rusai; Rebecca Herzog; Lilian Kuster; Klaus Kratochwill; Christoph Aufricht

Non-physiological components of peritoneal dialysis fluids (PDF) lead to the injury of peritoneal mesothelial cells resulting in the failure of peritoneal dialysis (PD) potentially via inadequate induction of the protective heat shock response (HSR). Glycogen synthase kinase-3β (GSK-3β) is a negative regulator of cell survival partly by suppression of the HSR and is influenced by stress stimuli also present in conventional PDF. The effects of PDF on GSK-3β activation and the impact of GSK-3β inhibition with lithium (LiCl) were investigated on cell survival with special regard to HSR, in particular to heat shock transcription factor 1 (HSF-1) activation and Hsp72 production in an in vitro model of PD using MeT-5A and primary mesothelial cells. Incubation of cells with the PDF Dianeal® (glucose-based, low pH, high glucose degradation products (GDP)) and Extraneal® (icodextrin-based, low pH, low GDP) caused activation of GSK-3β compared to the other tested PDF, i.e. Balance®, Physioneal® (normal pH, glucose-based, low GDP) and Nutrineal® (moderately acidic, amino acid-based). Inhibition of GSK-3β with LiCl in Dianeal® and Extraneal®-treated cells dose-dependently decreased cell damage and death rate and was paralleled by higher HSF-1 activation and Hsp72 expression. GSK-3β is activated by low pH GDP containing PDF with and without glucose as osmotic agent, indicating that GSK-3β is involved in mesothelial cell signalling in response to experimental PD. Inhibition of GSK-3β with LiCl ameliorated cell injury and improved HSR upon PDF exposure. Thus, GSK-3β inhibitors likely have therapeutic potential as cytoprotective additive for decreasing PDF toxicity.

Collaboration


Dive into the Rebecca Herzog's collaboration.

Top Co-Authors

Avatar

Klaus Kratochwill

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Christoph Aufricht

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Andreas Vychytil

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Anton Lichtenauer

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Lilian Kuster

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Anja Wagner

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Seth L. Alper

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Katarzyna Bialas

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Boehm

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge