Rebecca J. Faleiro
Queensland University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rebecca J. Faleiro.
PLOS Neglected Tropical Diseases | 2014
Rebecca J. Faleiro; Rajiv Kumar; Louise M. Hafner; Christian R. Engwerda
Visceral leishmaniasis is a chronic parasitic disease associated with severe immune dysfunction. Treatment options are limited to relatively toxic drugs, and there is no vaccine for humans available. Hence, there is an urgent need to better understand immune responses following infection with Leishmania species by studying animal models of disease and clinical samples from patients. Here, we review recent discoveries in these areas and highlight shortcomings in our knowledge that need to be addressed if better treatment options are to be developed and effective vaccines designed.
PLOS Pathogens | 2016
Marcela Montes de Oca; R. Kumar; Fabian de Labastida Rivera; Fiona H. Amante; Meru Sheel; Rebecca J. Faleiro; Patrick T. Bunn; Shannon E. Best; Lynette Beattie; Susanna S. Ng; Chelsea L. Edwards; Werner Müller; Erika Cretney; Stephen L. Nutt; Mark J. Smyth; Ashraful Haque; Geoffrey R. Hill; Shyam Sundar; Axel Kallies; Christian R. Engwerda
Tumor necrosis factor (TNF) is critical for controlling many intracellular infections, but can also contribute to inflammation. It can promote the destruction of important cell populations and trigger dramatic tissue remodeling following establishment of chronic disease. Therefore, a better understanding of TNF regulation is needed to allow pathogen control without causing or exacerbating disease. IL-10 is an important regulatory cytokine with broad activities, including the suppression of inflammation. IL-10 is produced by different immune cells; however, its regulation and function appears to be cell-specific and context-dependent. Recently, IL-10 produced by Th1 (Tr1) cells was shown to protect host tissues from inflammation induced following infection. Here, we identify a novel pathway of TNF regulation by IL-10 from Tr1 cells during parasitic infection. We report elevated Blimp-1 mRNA levels in CD4+ T cells from visceral leishmaniasis (VL) patients, and demonstrate IL-12 was essential for Blimp-1 expression and Tr1 cell development in experimental VL. Critically, we show Blimp-1-dependent IL-10 production by Tr1 cells prevents tissue damage caused by IFNγ-dependent TNF production. Therefore, we identify Blimp-1-dependent IL-10 produced by Tr1 cells as a key regulator of TNF-mediated pathology and identify Tr1 cells as potential therapeutic tools to control inflammation.
Cell Reports | 2016
Marcela Montes de Oca; Rajiv Kumar; Fabian de Labastida Rivera; Fiona H. Amante; Meru Sheel; Rebecca J. Faleiro; Patrick T. Bunn; Shannon E. Best; Lynette Beattie; Susanna S. Ng; Chelsea L. Edwards; Glen M. Boyle; Ric N. Price; Nicholas M. Anstey; Jessica R. Loughland; Julie Burel; Denise L. Doolan; Ashraful Haque; James S. McCarthy; Christian R. Engwerda
Summary The development of immunoregulatory networks is important to prevent disease. However, these same networks allow pathogens to persist and reduce vaccine efficacy. Here, we identify type I interferons (IFNs) as important regulators in developing anti-parasitic immunity in healthy volunteers infected for the first time with Plasmodium falciparum. Type I IFNs suppressed innate immune cell function and parasitic-specific CD4+ T cell IFNγ production, and they promoted the development of parasitic-specific IL-10-producing Th1 (Tr1) cells. Type I IFN-dependent, parasite-specific IL-10 production was also observed in P. falciparum malaria patients in the field following chemoprophylaxis. Parasite-induced IL-10 suppressed inflammatory cytokine production, and IL-10 levels after drug treatment were positively associated with parasite burdens before anti-parasitic drug administration. These findings have important implications for understanding the development of host immune responses following blood-stage P. falciparum infection, and they identify type I IFNs and related signaling pathways as potential targets for therapies or vaccine efficacy improvement.
Journal of Immunology | 2014
Patrick T. Bunn; Amanda C. Stanley; Fabian de Labastida Rivera; Alexander Mulherin; Meru Sheel; Clare E. Alexander; Rebecca J. Faleiro; Fiona H. Amante; Marcela Montes de Oca; Shannon E. Best; Kylie R. James; Paul M. Kaye; Ashraful Haque; Christian R. Engwerda
Organ-specific immunity is a feature of many infectious diseases, including visceral leishmaniasis caused by Leishmania donovani. Experimental visceral leishmaniasis in genetically susceptible mice is characterized by an acute, resolving infection in the liver and chronic infection in the spleen. CD4+ T cell responses are critical for the establishment and maintenance of hepatic immunity in this disease model, but their role in chronically infected spleens remains unclear. In this study, we show that dendritic cells are critical for CD4+ T cell activation and expansion in all tissue sites examined. We found that FTY720-mediated blockade of T cell trafficking early in infection prevented Ag-specific CD4+ T cells from appearing in lymph nodes, but not the spleen and liver, suggesting that early CD4+ T cell priming does not occur in liver-draining lymph nodes. Extended treatment with FTY720 over the first month of infection increased parasite burdens, although this associated with blockade of lymphocyte egress from secondary lymphoid tissue, as well as with more generalized splenic lymphopenia. Importantly, we demonstrate that CD4+ T cells are required for the establishment and maintenance of antiparasitic immunity in the liver, as well as for immune surveillance and suppression of parasite outgrowth in chronically infected spleens. Finally, although early CD4+ T cell priming appeared to occur most effectively in the spleen, we unexpectedly revealed that protective CD4+ T cell–mediated hepatic immunity could be generated in the complete absence of all secondary lymphoid tissues.
PLOS Neglected Tropical Diseases | 2016
Rebecca J. Faleiro; Rajiv Kumar; Patrick T. Bunn; Neetu Singh; Shashi Bhushan Chauhan; Meru Sheel; Fiona H. Amante; Marcela Montes de Oca; Chelsea L. Edwards; Susanna S. Ng; Shannon E. Best; Ashraful Haque; Lynette Beattie; Louise M. Hafner; David L. Sacks; Susanne Nylén; Shyam Sundar; Christian R. Engwerda
Chronic disease caused by infections, cancer or autoimmunity can result in profound immune suppression. Immunoregulatory networks are established to prevent tissue damage caused by inflammation. Although these immune checkpoints preserve tissue function, they allow pathogens and tumors to persist, and even expand. Immune checkpoint blockade has recently been successfully employed to treat cancer. This strategy modulates immunoregulatory mechanisms to allow host immune cells to kill or control tumors. However, the utility of this approach for controlling established infections has not been extensively investigated. Here, we examined the potential of modulating glucocorticoid-induced TNF receptor-related protein (GITR) on T cells to improve anti-parasitic immunity in blood and spleen tissue from visceral leishmaniasis (VL) patients infected with Leishmania donovani. We found little effect on parasite growth or parasite-specific IFNγ production. However, this treatment reversed the improved anti-parasitic immunity achieved by IL-10 signaling blockade. Further investigations using an experimental VL model caused by infection of C57BL/6 mice with L. donovani revealed that this negative effect was prominent in the liver, dependent on parasite burden and associated with an accumulation of Th1 cells expressing high levels of KLRG-1. Nevertheless, combined anti-IL-10 and anti-GITR mAb treatment could improve anti-parasitic immunity when used with sub-optimal doses of anti-parasitic drug. However, additional studies with VL patient samples indicated that targeting GITR had no overall benefit over IL-10 signaling blockade alone at improving anti-parasitic immune responses, even with drug treatment cover. These findings identify several important factors that influence the effectiveness of immune modulation, including parasite burden, target tissue and the use of anti-parasitic drug. Critically, these results also highlight potential negative effects of combining different immune modulation strategies.
Journal of Immunology | 2015
Meru Sheel; Lynette Beattie; Teija C. M. Frame; Fabian de Labastida Rivera; Rebecca J. Faleiro; Patrick T. Bunn; Marcela Montes de Oca; Chelsea L. Edwards; Susanna S. Ng; R. Kumar; Fiona H. Amante; Shannon E. Best; Antiopi Varelias; Rachel D. Kuns; Kelli P. A. MacDonald; Mark J. Smyth; Ashraful Haque; Geoff R. Hill; Christian R. Engwerda
Intracellular infections, such as those caused by the protozoan parasite Leishmania donovani, a causative agent of visceral leishmaniasis (VL), require a potent host proinflammatory response for control. IL-17 has emerged as an important proinflammatory cytokine required for limiting growth of both extracellular and intracellular pathogens. However, there are conflicting reports on the exact roles for IL-17 during parasitic infections and limited knowledge about cellular sources and the immune pathways it modulates. We examined the role of IL-17 in an experimental model of VL caused by infection of C57BL/6 mice with L. donovani and identified an early suppressive role for IL-17 in the liver that limited control of parasite growth. IL-17–producing γδ T cells recruited to the liver in the first week of infection were the critical source of IL-17 in this model, and CCR2+ inflammatory monocytes were an important target for the suppressive effects of IL-17. Improved parasite control was independent of NO generation, but associated with maintenance of superoxide dismutase mRNA expression in the absence of IL-17 in the liver. Thus, we have identified a novel inhibitory function for IL-17 in parasitic infection, and our results demonstrate important interactions among γδ T cells, monocytes, and infected macrophages in the liver that can determine the outcome of parasitic infection.
PLOS Pathogens | 2016
Marcela Montes de Oca; Rajiv Kumar; Fabian de Labastida Rivera; Fiona H. Amante; Meru Sheel; Rebecca J. Faleiro; Patrick T. Bunn; Shannon E. Best; Lynette Beattie; Susanna S. Ng; Chelsea L. Edwards; Werner Müller; Erika Cretney; Stephen L. Nutt; Mark J. Smyth; Ashraful Haque; Geoffrey R. Hill; Shyam Sundar; Axel Kallies; Christian R. Engwerda
The following information is missing from the Funding section: This study was supported by funding from the National Institute of Allergy and Infectious Diseases, National Institutes of Health Tropical Medicine Research Centre Program, Grant ID No: 2P50AI7434.
School of Biomedical Sciences; Faculty of Health; Institute of Health and Biomedical Innovation | 2016
Rebecca J. Faleiro
Institute of Health and Biomedical Innovation | 2016
Rebecca J. Faleiro; Rajiv Kumar; Patrick T. Bunn; Neetu Singh; Shashi Bhushan Chauhan; Meru Sheel; Fiona H. Amante; Marcela Montes de Oca; Chelsea L. Edwards; Susanna S. Ng; Shannon E. Best; Ashraful Haque; Lynette Beattie; Louise M. Hafner; David L. Sacks; Susanne Nylén; Shyam Sundar; Christian R. Engwerda
Archive | 2015
Chelsea L. Edwards; Vivian Zhang; Rhiannon B. Werder; Shannon E. Best; Ismail; Kylie R. James; Rebecca J. Faleiro; Fabian de Labastida Rivera; Christian R. Engwerda; Simon Phipps; Ashraful Haque