Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebecca L. Skalsky is active.

Publication


Featured researches published by Rebecca L. Skalsky.


Annual Review of Microbiology | 2010

Viruses, microRNAs, and Host Interactions

Rebecca L. Skalsky; Bryan R. Cullen

One of the most significant recent advances in biomedical research has been the discovery of the approximately 22-nt-long class of noncoding RNAs designated microRNAs (miRNAs). These regulatory RNAs provide a unique level of posttranscriptional gene regulation that modulates a range of fundamental cellular processes. Several viruses, especially herpesviruses, also encode miRNAs, and over 200 viral miRNAs have now been identified. Current evidence indicates that viruses use these miRNAs to manipulate both cellular and viral gene expression. Furthermore, viral infection can exert a profound impact on the cellular miRNA expression profile, and several RNA viruses have been reported to interact directly with cellular miRNAs and/or to use these miRNAs to augment their replication potential. Here we discuss our current knowledge of viral miRNAs and virally influenced cellular miRNAs and their relationship to viral infection.


PLOS Pathogens | 2012

The viral and cellular microRNA targetome in lymphoblastoid cell lines

Rebecca L. Skalsky; David L. Corcoran; Eva Gottwein; Christopher L. Frank; Dong-Wha Kang; Markus Hafner; Jeffrey D. Nusbaum; Regina Feederle; Henri Jacques Delecluse; Micah A. Luftig; Thomas Tuschl; Uwe Ohler; Bryan R. Cullen

Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus linked to a number of B cell cancers and lymphoproliferative disorders. During latent infection, EBV expresses 25 viral pre-microRNAs (miRNAs) and induces the expression of specific host miRNAs, such as miR-155 and miR-21, which potentially play a role in viral oncogenesis. To date, only a limited number of EBV miRNA targets have been identified; thus, the role of EBV miRNAs in viral pathogenesis and/or lymphomagenesis is not well defined. Here, we used photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) combined with deep sequencing and computational analysis to comprehensively examine the viral and cellular miRNA targetome in EBV strain B95-8-infected lymphoblastoid cell lines (LCLs). We identified 7,827 miRNA-interaction sites in 3,492 cellular 3′UTRs. 531 of these sites contained seed matches to viral miRNAs. 24 PAR-CLIP-identified miRNA:3′UTR interactions were confirmed by reporter assays. Our results reveal that EBV miRNAs predominantly target cellular transcripts during latent infection, thereby manipulating the host environment. Furthermore, targets of EBV miRNAs are involved in multiple cellular processes that are directly relevant to viral infection, including innate immunity, cell survival, and cell proliferation. Finally, we present evidence that myc-regulated host miRNAs from the miR-17/92 cluster can regulate latent viral gene expression. This comprehensive survey of the miRNA targetome in EBV-infected B cells represents a key step towards defining the functions of EBV-encoded miRNAs, and potentially, identifying novel therapeutic targets for EBV-associated malignancies.


Cell Host & Microbe | 2011

Viral microRNA targetome of KSHV-infected primary effusion lymphoma cell lines.

Eva Gottwein; David L. Corcoran; Neelanjan Mukherjee; Rebecca L. Skalsky; Markus Hafner; Jeffrey D. Nusbaum; Priscilla Shamulailatpam; Cassandra Love; Sandeep S. Dave; Thomas Tuschl; Uwe Ohler; Bryan R. Cullen

Primary effusion lymphoma (PEL) is caused by Kaposis sarcoma-associated herpesvirus (KSHV) and frequently also harbors Epstein-Barr virus (EBV). The expression of KSHV- and EBV-encoded microRNAs (miRNAs) in PELs suggests a role for these miRNAs in latency and lymphomagenesis. Using PAR-CLIP, a technology which allows the direct and transcriptome-wide identification of miRNA targets, we delineate the target sites for all viral and cellular miRNAs expressed in PEL cell lines. The resulting data set revealed that KSHV miRNAs directly target more than 2000 cellular mRNAs, including many involved in pathways relevant to KSHV pathogenesis. Moreover, 58% of these mRNAs are also targeted by EBV miRNAs, via distinct binding sites. In addition to a known viral analog of cellular miR-155, we show that KSHV encodes a viral miRNA that mimics cellular miR-142-3p function. In summary, this study identifies an extensive list of KSHV miRNA targets, which are likely to influence viral replication and pathogenesis.


Genome Biology | 2011

PARalyzer: definition of RNA binding sites from PAR-CLIP short-read sequence data

David L. Corcoran; Stoyan Georgiev; Neelanjan Mukherjee; Eva Gottwein; Rebecca L. Skalsky; Jack D. Keene; Uwe Ohler

Crosslinking and immunoprecipitation (CLIP) protocols have made it possible to identify transcriptome-wide RNA-protein interaction sites. In particular, PAR-CLIP utilizes a photoactivatable nucleoside for more efficient crosslinking. We present an approach, centered on the novel PARalyzer tool, for mapping high-confidence sites from PAR-CLIP deep-sequencing data. We show that PARalyzer delineates sites with a high signal-to-noise ratio. Motif finding identifies the sequence preferences of RNA-binding proteins, as well as seed-matches for highly expressed microRNAs when profiling Argonaute proteins. Our study describes tailored analytical methods and provides guidelines for future efforts to utilize high-throughput sequencing in RNA biology. PARalyzer is available at http://www.genome.duke.edu/labs/ohler/research/PARalyzer/.


Journal of Virology | 2010

Virally Induced Cellular MicroRNA miR-155 Plays a Key Role in B-Cell Immortalization by Epstein-Barr Virus

Sarah D. Linnstaedt; Eva Gottwein; Rebecca L. Skalsky; Micah A. Luftig; Bryan R. Cullen

ABSTRACT Infection of resting primary human B cells by Epstein-Barr virus (EBV) results in their transformation into indefinitely proliferating lymphoblastoid cell lines (LCLs). LCL formation serves as a model for lymphomagenesis, and LCLs are phenotypically similar to EBV-positive diffuse large B-cell lymphomas (DLBCLs), which represent a common AIDS-associated malignancy. B-cell infection by EBV induces the expression of several cellular microRNAs (miRNAs), most notably miR-155, which is overexpressed in many tumors and can induce B-cell lymphomas when overexpressed in animals. Here, we demonstrate that miR-155 is the most highly expressed miRNA in LCLs and that the selective inhibition of miR-155 function specifically inhibits the growth of both LCLs and the DLBCL cell line IBL-1. Cells lacking miR-155 are inefficient in progressing through S phase and spontaneously undergo apoptosis. In contrast, three other B-cell lymphoma lines, including two EBV-positive Burkitts lymphoma cell lines, grew normally in the absence of miR-155 function. These data identify the induction of cellular miR-155 expression by EBV as critical for the growth of both laboratory-generated LCLs and naturally occurring DLBCLs and suggest that targeted inhibition of miR-155 function could represent a novel approach to the treatment of DLBCL in vivo.


BMC Genomics | 2010

Identification of microRNAs expressed in two mosquito vectors, Aedes albopictus and Culex quinquefasciatus

Rebecca L. Skalsky; Dana L. Vanlandingham; Frank Scholle; Stephen Higgs; Bryan R. Cullen

BackgroundMicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression in a variety of organisms, including insects, vertebrates, and plants. miRNAs play important roles in cell development and differentiation as well as in the cellular response to stress and infection. To date, there are limited reports of miRNA identification in mosquitoes, insects that act as essential vectors for the transmission of many human pathogens, including flaviviruses. West Nile virus (WNV) and dengue virus, members of the Flaviviridae family, are primarily transmitted by Aedes and Culex mosquitoes. Using high-throughput deep sequencing, we examined the miRNA repertoire in Ae. albopictus cells and Cx. quinquefasciatus mosquitoes.ResultsWe identified a total of 65 miRNAs in the Ae. albopictus C7/10 cell line and 77 miRNAs in Cx. quinquefasciatus mosquitoes, the majority of which are conserved in other insects such as Drosophila melanogaster and Anopheles gambiae. The most highly expressed miRNA in both mosquito species was miR-184, a miRNA conserved from insects to vertebrates. Several previously reported Anopheles miRNAs, including miR-1890 and miR-1891, were also found in Culex and Aedes, and appear to be restricted to mosquitoes. We identified seven novel miRNAs, arising from nine different precursors, in C7/10 cells and Cx. quinquefasciatus mosquitoes, two of which have predicted orthologs in An. gambiae. Several of these novel miRNAs reside within a ~350 nt long cluster present in both Aedes and Culex. miRNA expression was confirmed by primer extension analysis. To determine whether flavivirus infection affects miRNA expression, we infected female Culex mosquitoes with WNV. Two miRNAs, miR-92 and miR-989, showed significant changes in expression levels following WNV infection.ConclusionsAedes and Culex mosquitoes are important flavivirus vectors. Recent advances in both mosquito genomics and high-throughput sequencing technologies enabled us to interrogate the miRNA profile in these two species. Here, we provide evidence for over 60 conserved and seven novel mosquito miRNAs, expanding upon our current understanding of insect miRNAs. Undoubtedly, some of the miRNAs identified will have roles not only in mosquito development, but also in mediating viral infection in the mosquito host.


PLOS ONE | 2011

Reduced Expression of Brain-Enriched microRNAs in Glioblastomas Permits Targeted Regulation of a Cell Death Gene

Rebecca L. Skalsky; Bryan R. Cullen

Glioblastoma is a highly aggressive malignant tumor involving glial cells in the human brain. We used high-throughput sequencing to comprehensively profile the small RNAs expressed in glioblastoma and non-tumor brain tissues. MicroRNAs (miRNAs) made up the large majority of small RNAs, and we identified over 400 different cellular pre-miRNAs. No known viral miRNAs were detected in any of the samples analyzed. Cluster analysis revealed several miRNAs that were significantly down-regulated in glioblastomas, including miR-128, miR-124, miR-7, miR-139, miR-95, and miR-873. Post-transcriptional editing was observed for several miRNAs, including the miR-376 family, miR-411, miR-381, and miR-379. Using the deep sequencing information, we designed a lentiviral vector expressing a cell suicide gene, the herpes simplex virus thymidine kinase (HSV-TK) gene, under the regulation of a miRNA, miR-128, that was found to be enriched in non-tumor brain tissue yet down-regulated in glioblastomas, Glioblastoma cells transduced with this vector were selectively killed when cultured in the presence of ganciclovir. Using an in vitro model to recapitulate expression of brain-enriched miRNAs, we demonstrated that neuronally differentiated SH-SY5Y cells transduced with the miRNA-regulated HSV-TK vector are protected from killing by expression of endogenous miR-128. Together, these results provide an in-depth analysis of miRNA dysregulation in glioblastoma and demonstrate the potential utility of these data in the design of miRNA-regulated therapies for the treatment of brain cancers.


Genes & Development | 2010

Sex-induced silencing defends the genome of Cryptococcus neoformans via RNAi

Xuying Wang; Yen-Ping Hsueh; Wenjun Li; Anna Floyd; Rebecca L. Skalsky; Joseph Heitman

Cosuppression is a silencing phenomenon triggered by the introduction of homologous DNA sequences into the genomes of organisms as diverse as plants, fungi, flies, and nematodes. Here we report sex-induced silencing (SIS), which is triggered by tandem integration of a transgene array in the human fungal pathogen Cryptococcus neoformans. A SXI2a-URA5 transgene array was found to be post-transcriptionally silenced during sexual reproduction. More than half of the progeny that inherited the SXI2a-URA5 transgene became uracil-auxotrophic due to silencing of the URA5 gene. In vegetative mitotic growth, silencing of this transgene array occurred at an ∼250-fold lower frequency, indicating that silencing is induced during the sexual cycle. Central components of the RNAi pathway-including genes encoding Argonaute, Dicer, and an RNA-dependent RNA polymerase-are all required for both meiotic and mitotic transgene silencing. URA5-derived ∼22-nucleotide (nt) small RNAs accumulated in the silenced isolates, suggesting that SIS is mediated by RNAi via sequence-specific small RNAs. Through deep sequencing of the small RNA population in C. neoformans, we also identified abundant small RNAs mapping to repetitive transposable elements, and these small RNAs were absent in rdp1 mutant strains. Furthermore, a group of retrotransposons was highly expressed during mating of rdp1 mutant strains, and an increased transposition/mutation rate was detected in their progeny, indicating that the RNAi pathway squelches transposon activity during the sexual cycle. Interestingly, Ago1, Dcr1, Dcr2, and Rdp1 are translationally induced in mating cells, and Ago1, Dcr1, and Dcr2 localize to processing bodies (P bodies), whereas Rdp1 appears to be nuclear, providing mechanistic insights into the elevated silencing efficiency during sexual reproduction. We hypothesize that the SIS RNAi pathway operates to defend the genome during sexual development.


The EMBO Journal | 2013

MicroRNA-17∼92 plays a causative role in lymphomagenesis by coordinating multiple oncogenic pathways

Hyun Yong Jin; Hiroyo Oda; Maoyi Lai; Rebecca L. Skalsky; Kelly Bethel; Jovan Shepherd; Seung Goo Kang; Wen Hsien Liu; Mohsen Sabouri-Ghomi; Bryan R. Cullen; Klaus Rajewsky; Changchun Xiao

MicroRNAs (miRNAs) have been broadly implicated in cancer, but their exact function and mechanism in carcinogenesis remain poorly understood. Elevated miR‐17∼92 expression is frequently found in human cancers, mainly due to gene amplification and Myc‐mediated transcriptional upregulation. Here we show that B cell‐specific miR‐17∼92 transgenic mice developed lymphomas with high penetrance and that, conversely, Myc‐driven lymphomagenesis stringently requires two intact alleles of miR‐17∼92. We experimentally identified miR‐17∼92 target genes by PAR‐CLIP and validated select target genes in miR‐17∼92 transgenic mice. These analyses demonstrate that miR‐17∼92 drives lymphomagenesis by suppressing the expression of multiple negative regulators of the PI3K and NFκB pathways and by inhibiting the mitochondrial apoptosis pathway. Accordingly, miR‐17∼92‐driven lymphoma cells exhibited constitutive activation of the PI3K and NFκB pathways and chemical inhibition of either pathway reduced tumour size and prolonged the survival of lymphoma‐bearing mice. These findings establish miR‐17∼92 as a powerful cancer driver that coordinates the activation of multiple oncogenic pathways, and demonstrate for the first time that chemical inhibition of miRNA downstream pathways has therapeutic value in treating cancers caused by miRNA dysregulation.


Journal of Virology | 2014

Replication of Many Human Viruses Is Refractory to Inhibition by Endogenous Cellular MicroRNAs

Hal P. Bogerd; Rebecca L. Skalsky; Edward M. Kennedy; Yuki Furuse; Adam W. Whisnant; Omar Flores; Kimberly L. W. Schultz; Nicole Putnam; Nicholas J. Barrows; Barbara Sherry; Frank Scholle; Mariano A. Garcia-Blanco; Diane E. Griffin; Bryan R. Cullen

ABSTRACT The issue of whether viruses are subject to restriction by endogenous microRNAs (miRNAs) and/or by virus-induced small interfering RNAs (siRNAs) in infected human somatic cells has been controversial. Here, we address this question in two ways. First, using deep sequencing, we demonstrate that infection of human cells by the RNA virus dengue virus (DENV) or West Nile virus (WNV) does not result in the production of any virus-derived siRNAs or viral miRNAs. Second, to more globally assess the potential of small regulatory RNAs to inhibit virus replication, we used gene editing to derive human cell lines that lack a functional Dicer enzyme and that therefore are unable to produce miRNAs or siRNAs. Infection of these cells with a wide range of viruses, including DENV, WNV, yellow fever virus, Sindbis virus, Venezuelan equine encephalitis virus, measles virus, influenza A virus, reovirus, vesicular stomatitis virus, human immunodeficiency virus type 1, or herpes simplex virus 1 (HSV-1), failed to reveal any enhancement in the replication of any of these viruses, although HSV-1, which encodes at least eight Dicer-dependent viral miRNAs, did replicate somewhat more slowly in the absence of Dicer. We conclude that most, and perhaps all, human viruses have evolved to be resistant to inhibition by endogenous human miRNAs during productive replication and that dependence on a cellular miRNA, as seen with hepatitis C virus, is rare. How viruses have evolved to avoid inhibition by endogenous cellular miRNAs, which are generally highly conserved during metazoan evolution, remains to be determined. IMPORTANCE Eukaryotic cells express a wide range of small regulatory RNAs, including miRNAs, that have the potential to inhibit the expression of mRNAs that show sequence complementarity. Indeed, previous work has suggested that endogenous miRNAs have the potential to inhibit viral gene expression and replication. Here, we demonstrate that the replication of a wide range of pathogenic viruses is not enhanced in human cells engineered to be unable to produce miRNAs, indicating that viruses have evolved to be resistant to inhibition by miRNAs. This result is important, as it implies that manipulation of miRNA levels is not likely to prove useful in inhibiting virus replication. It also focuses attention on the question of how viruses have evolved to resist inhibition by miRNAs and whether virus mutants that have lost this resistance might prove useful, for example, in the development of attenuated virus vaccines.

Collaboration


Dive into the Rebecca L. Skalsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Gottwein

Northwestern University

View shared research outputs
Top Co-Authors

Avatar

Uwe Ohler

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Scholle

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Mariano A. Garcia-Blanco

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge