Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebecca Nace is active.

Publication


Featured researches published by Rebecca Nace.


Journal of Virology | 2010

Attenuation of Vesicular Stomatitis Virus Encephalitis through MicroRNA Targeting

Elizabeth J Kelly; Rebecca Nace; Glen N. Barber; Stephen J. Russell

ABSTRACT Vesicular stomatitis virus (VSV) has long been regarded as a promising recombinant vaccine platform and oncolytic agent but has not yet been tested in humans because it causes encephalomyelitis in rodents and primates. Recent studies have shown that specific tropisms of several viruses could be eliminated by engineering microRNA target sequences into their genomes, thereby inhibiting spread in tissues expressing cognate microRNAs. We therefore sought to determine whether microRNA targets could be engineered into VSV to ameliorate its neuropathogenicity. Using a panel of recombinant VSVs incorporating microRNA target sequences corresponding to neuron-specific or control microRNAs (in forward and reverse orientations), we tested viral replication kinetics in cell lines treated with microRNA mimics, neurotoxicity after direct intracerebral inoculation in mice, and antitumor efficacy. Compared to picornaviruses and adenoviruses, the engineered VSVs were relatively resistant to microRNA-mediated inhibition, but neurotoxicity could nevertheless be ameliorated significantly using this approach, without compromise to antitumor efficacy. Neurotoxicity was most profoundly reduced in a virus carrying four tandem copies of a neuronal mir125 target sequence inserted in the 3′-untranslated region of the viral polymerase (L) gene.


Leukemia | 2012

Curative one-shot systemic virotherapy in murine myeloma

Shruthi Naik; Rebecca Nace; Mark J. Federspiel; Glen N. Barber; Kah-Whye Peng; Stephen J. Russell

Current therapy for multiple myeloma is complex and prolonged. Antimyeloma drugs are combined in induction, consolidation and/or maintenance protocols to destroy bulky disease, then suppress or eradicate residual disease. Oncolytic viruses have the potential to mediate both tumor debulking and residual disease elimination, but this curative paradigm remains unproven. Here, we engineered an oncolytic vesicular stomatitis virus to minimize its neurotoxicity, enhance induction of antimyeloma immunity and facilitate noninvasive monitoring of its intratumoral spread. Using high-resolution imaging, autoradiography and immunohistochemistry, we demonstrate that the intravenously administered virus extravasates from tumor blood vessels in immunocompetent myeloma-bearing mice, nucleating multiple intratumoral infectious centers that expand rapidly and necrose at their centers, ultimately coalescing to cause extensive tumor destruction. This oncolytic tumor debulking phase lasts only for 72 h after virus administration, and is completed before antiviral antibodies become detectable in the bloodstream. Antimyeloma T cells, cross-primed as the virus-infected cells provoke an antiviral immune response, then eliminate residual uninfected myeloma cells. The study establishes a curative oncolytic paradigm for multiple myeloma where direct tumor debulking and immune eradication of minimal disease are mediated by a single intravenous dose of a single therapeutic agent. Clinical translation is underway.


Cancer Gene Therapy | 2012

Potent systemic therapy of multiple myeloma utilizing oncolytic vesicular stomatitis virus coding for interferon-β

Shruthi Naik; Rebecca Nace; Glen N. Barber; Stephen J. Russell

Multiple myeloma (MM) is an incurable malignancy of plasma secreting B cells disseminated in the bone marrow. Successful utilization of oncolytic virotherapy for myeloma treatment requires a systemically administered virus that selectively destroys disseminated myeloma cells in an immune-competent host. Vesicular stomatitis virus (VSV)-expressing interferon-β (IFNβ) is a promising new oncolytic agent that exploits tumor-associated defects in innate immune signaling pathways to destroy cancer cells specifically. We demonstrate here that a single, intravenous dose of VSV coding for IFNβ (VSV-IFNβ) specifically destroys subcutaneous and disseminated 5TGM1 myeloma in an immune-competent myeloma model. VSV-IFN treatment significantly prolonged survival in mice bearing orthotopic myeloma. Viral murine IFNβ expression further delayed myeloma progression and significantly enhanced survival compared with VSV-expressing human IFNβ. Evaluation of VSV-IFNβ oncolytic activity in human myeloma cell lines and primary patient samples confirmed myeloma-specific oncolytic activity, but revealed variable susceptibility to VSV-IFNβ oncolysis. The results indicate that VSV-IFNβ is a potent, safe oncolytic agent that can be systemically administered to target and destroy disseminated myeloma effectively in immune-competent mice. IFNβ expression improves cancer specificity and enhances VSV therapeutic efficacy against disseminated myeloma. These data show VSV-IFNβ to be a promising vector for further development as a potential therapy for the treatment of MM.


PLOS ONE | 2013

Mathematical Model for Radial Expansion and Conflation of Intratumoral Infectious Centers Predicts Curative Oncolytic Virotherapy Parameters

Kent R. Bailey; Amber C. Kirk; Shruthi Naik; Rebecca Nace; Michael B. Steele; Lukkana Suksanpaisan; Xing Li; Mark J. Federspiel; Kah Whye Peng; David Kirk; Stephen J. Russell

Simple, inductive mathematical models of oncolytic virotherapy are needed to guide protocol design and improve treatment outcomes. Analysis of plasmacytomas regressing after a single intravenous dose of oncolytic vesicular stomatitis virus in myeloma animal models revealed that intratumoral virus spread was spatially constrained, occurring almost exclusively through radial expansion of randomly distributed infectious centers. From these experimental observations we developed a simple model to calculate the probability of survival for any cell within a treated tumor. The model predicted that small changes to the density of initially infected cells or to the average maximum radius of infected centers would have a major impact on treatment outcome, and this was confirmed experimentally. The new model provides a useful and flexible tool for virotherapy protocol optimization.


Cancer Gene Therapy | 2013

HSV-NIS, an oncolytic herpes simplex virus type 1 encoding human sodium iodide symporter for preclinical prostate cancer radiovirotherapy

H. Li; Hiroshi Nakashima; T D Decklever; Rebecca Nace; Stephen J. Russell

Several clinical trials have shown that oncolytic herpes simplex virus type 1 (oHSV-1) can be safely administered to patients. However, virus replication in tumor tissue has generally not been monitored in these oHSV clinical trials, and the data suggest that its oncolytic potency needs to be improved. To facilitate noninvasive monitoring of the in vivo spread of an oHSV and to increase its antitumor efficacy, the gene coding for human sodium iodide symporter (NIS) was incorporated into a recombinant oHSV genome and the corresponding virus (oHSV-NIS) rescued in our laboratory. Our data demonstrate that a human prostate cancer cell line, LNCap, efficiently concentrates radioactive iodine after the cells have been infected in vitro or in vivo. In vivo replication of oHSV-NIS in tumors was noninvasively monitored by computed tomography/single-photon emission computed tomography imaging of the biodistribution of pertechnetate and was confirmed. LNCap xenografts in nude mice were eradicated by intratumoral administration of oHSV-NIS. Systemic administration of oHSV-NIS prolonged the survival of tumor-bearing mice, and the therapeutic effect was further enhanced by administration of 131I after the intratumoral spread of the virus had peaked. oHSV-NIS has the potential to substantially enhance the outcomes of standard therapy for patients with prostate cancer.


Journal of Virology | 2013

Neuroattenuation of Vesicular Stomatitis Virus through Picornaviral Internal Ribosome Entry Sites

Arun Ammayappan; Rebecca Nace; Kah Whye Peng; Stephen J. Russell

ABSTRACT Vesicular stomatitis virus (VSV) is potent and a highly promising agent for the treatment of cancer. However, translation of VSV oncolytic virotherapy into the clinic is being hindered by its inherent neurotoxicity. It has been demonstrated that selected picornaviral internal ribosome entry site (IRES) elements possess restricted activity in neuronal tissues. We therefore sought to determine whether the picornavirus IRES could be engineered into VSV to attenuate its neuropathogenicity. We have used IRES elements from human rhinovirus type 2 (HRV2) and foot-and-mouth disease virus (FMDV) to control the translation of the matrix gene (M), which plays a major role in VSV virulence. In vitro studies revealed slowed growth kinetics of IRES-controlled VSVs in most of the cell lines tested. However, in vivo studies explicitly demonstrated that IRES elements of HRV2 and FMDV severely attenuated the neurovirulence of VSV without perturbing its oncolytic potency.


PLOS ONE | 2013

Epitope Dampening Monotypic Measles Virus Hemagglutinin Glycoprotein Results in Resistance to Cocktail of Monoclonal Antibodies

Patrycja J. Lech; Gregory J. Tobin; Ruth V. Bushnell; Emily Gutschenritter; Linh Pham; Rebecca Nace; Els Verhoeyen; François-Loïc Cosset; Claude P. Muller; Stephen J. Russell; Peter L. Nara

The measles virus (MV) is serologically monotypic. Life-long immunity is conferred by a single attack of measles or following vaccination with the MV vaccine. This is contrary to viruses such as influenza, which readily develop resistance to the immune system and recur. A better understanding of factors that restrain MV to one serotype may allow us to predict if MV will remain monotypic in the future and influence the design of novel MV vaccines and therapeutics. MV hemagglutinin (H) glycoprotein, binds to cellular receptors and subsequently triggers the fusion (F) glycoprotein to fuse the virus into the cell. H is also the major target for neutralizing antibodies. To explore if MV remains monotypic due to a lack of plasticity of the H glycoprotein, we used the technology of Immune Dampening to generate viruses with rationally designed N-linked glycosylation sites and mutations in different epitopes and screened for viruses that escaped monoclonal antibodies (mAbs). We then combined rationally designed mutations with naturally selected mutations to generate a virus resistant to a cocktail of neutralizing mAbs targeting four different epitopes simultaneously. Two epitopes were protected by engineered N-linked glycosylations and two epitopes acquired escape mutations via two consecutive rounds of artificial selection in the presence of mAbs. Three of these epitopes were targeted by mAbs known to interfere with receptor binding. Results demonstrate that, within the epitopes analyzed, H can tolerate mutations in different residues and additional N-linked glycosylations to escape mAbs. Understanding the degree of change that H can tolerate is important as we follow its evolution in a host whose immunity is vaccine induced by genotype A strains instead of multiple genetically distinct wild-type MVs.


Molecular Therapy - Oncolytics | 2014

Reporter gene imaging identifies intratumoral infection voids as a critical barrier to systemic oncolytic virus efficacy

Amber Miller; Lukkana Suksanpaisan; Shruthi Naik; Rebecca Nace; Mark J. Federspiel; Kah Whye Peng; Stephen J. Russell

Systemically administered oncolytic viruses have the ability to cause tumor destruction through the expansion and coalescence of intratumoral infectious centers. Efficacy is therefore dependent upon both the density and intratumoral distribution of virus-infected cells achieved after initial virus infusion, and delivery methods are being developed to enhance these critical parameters. However, the three-dimensional (3D) mapping of intratumoral infectious centers is difficult using conventional immunohistochemical methodology, requiring painstaking 3D reconstruction of numerous sequential stained tumor sections, with no ability to study the temporal evolution of spreading infection in a single animal. We therefore developed a system using very high-resolution noninvasive in vivo micro single-photon emitted computed tomography/computed tomography (microSPECT/CT) imaging to determine the intratumoral distribution of thyroid radiotracers in tumors infected with an oncolytic virus encoding the thyroidal sodium–iodide symporter (NIS). This imaging system was used for longitudinal analysis of the density, distribution, and evolution of intratumoral infectious centers after systemic administration of oncolytic vesicular stomatitis virus in tumor-bearing mice and revealed heterogeneous delivery of virus particles both within and between tumors in animals receiving identical therapy. This study provides compelling validation of high resolution in vivo reporter gene mapping as a convenient method for serial monitoring of intratumoral virus spread that will be necessary to address critical barriers to systemic oncolytic virus efficacy such as intratumoral delivery.


Experimental Hematology | 2013

Oncolytic vesicular stomatitis virus and bortezomib are antagonistic against myeloma cells in vitro but have additive anti-myeloma activity in vivo.

Danielle N. Yarde; Rebecca Nace; Stephen J. Russell

Multiple myeloma cells are highly sensitive to the oncolytic effects of vesicular stomatitis virus (VSV), which specifically targets and kills cancer cells. Myeloma cells are also exquisitely sensitive to the cytotoxic effects of the clinically approved proteasome inhibitor bortezomib. Therefore, we sought to determine whether the combination of VSV and bortezomib would enhance tumor cell killing. However, as shown here, combining these two agents in vitro results in antagonism. We show that bortezomib inhibits VSV replication and spread. We found that bortezomib inhibits VSV-induced NF-κB activation and, using the NF-κB-specific inhibitor BMS-345541, that VSV requires NF-κB activity to spread efficiently in myeloma cells. In contrast to other cancer cell lines, viral titer is not recovered by BMS-345541 when myeloma cells are pretreated with interferon β. Thus, inhibiting NF-κB activity, either with bortezomib or BMS-345541, results in reduced VSV titers in myeloma cells in vitro. However, when VSV and bortezomib are combined in vivo in two syngeneic, immunocompetent myeloma models, the combination reduces tumor burden to a greater degree than VSV does as a single agent. Intratumoral VSV viral load is unchanged when mice are treated concomitantly with bortezomib compared to VSV treatment alone. To our knowledge, this report is the first to analyze the combination of VSV and bortezomib in vivo. Although antagonism between VSV and bortezomib is seen in vitro, analyzing these cells in the context of their host environment shows that bortezomib enhances VSV response, suggesting that this combination will also enhance response in myeloma patients.


Cancer Gene Therapy | 2013

Meningeal myeloma deposits adversely impact the therapeutic index of an oncolytic VSV

Danielle N. Yarde; Shruthi Naik; Rebecca Nace; Kah-Whye Peng; Mark J. Federspiel; Stephen J. Russell

Vesicular stomatitis virus (VSV) is neuropathogenic in rodents but can be attenuated 50-fold by engineering the mouse interferon-beta (IFN-β) gene into its genome. Intravenously administered VSVs encoding IFN-β have potent activity against subcutaneous tumors in the 5TGM1 mouse myeloma model, without attendant neurotoxicity. However, when 5TGM1 tumor cells were seeded intravenously, virus-treated mice with advanced myeloma developed clinical signs suggestive of meningoencephalitis. Co-administration of a known active antimyeloma agent did not prolong survival, further suggesting that deaths were due to viral toxicity, not tumor burden. Histological analysis revealed that systemically administered 5TGM1 cells seed to the CNS, forming meningeal tumor deposits, and that VSV infects and destroys these tumors. Death is presumably a consequence of meningeal damage and/or direct transmission of virus to adjacent neural tissue. In light of these studies, extreme caution is warranted in clinical testing of attenuated VSVs, particularly in patients with CNS tumor deposits.

Collaboration


Dive into the Rebecca Nace's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge