Rebecca Notman
University of Warwick
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rebecca Notman.
Langmuir | 2010
Ersin Emre Oren; Rebecca Notman; Il Won Kim; John Spencer Evans; Tiffany R. Walsh; Ram Samudrala; Candan Tamerler; Mehmet Sarikaya
Understanding the mechanisms of biomineralization and the realization of biology-inspired inorganic materials formation largely depends on our ability to manipulate peptide/solid interfacial interactions. Material interfaces and biointerfaces are critical sites for bioinorganic synthesis, surface diffusion, and molecular recognition. Recently adapted biocombinatorial techniques permit the isolation of peptides recognizing inorganic solids that are used as molecular building blocks, for example, as synthesizers, linkers, and assemblers. Despite their ubiquitous utility in nanotechnology, biotechnology, and medicine, the fundamental mechanisms of molecular recognition of engineered peptides binding to inorganic surfaces remain largely unknown. To explore propensity rules connecting sequence, structure, and function that play key roles in peptide/solid interactions, we combine two different approaches: a statistical analysis that searches for highly enriched motifs among de novo designed peptides, and, atomistic simulations of three experimentally validated peptides. The two strong and one weak quartz-binding peptides were chosen for the simulations at the quartz (100) surface under aqueous conditions. Solution-based peptide structures were analyzed by circular dichroism measurements. Small and hydrophobic residues, such as Pro, play a key role at the interface by making close contact with the solid and hindering formation of intrapeptide hydrogen bonds. The high binding affinity of a peptide may be driven by a combination of favorable enthalpic and entropic effects, that is, a strong binder may possess a large number of possible binding configurations, many of which having relatively high binding energies. The results signify the role of the local molecular environment among the critical residues that participate in solid binding. The work herein describes molecular conformations inherent in material-specific peptides and provides fundamental insight into the atomistic understanding of peptide/solid interfaces.
Advanced Drug Delivery Reviews | 2013
Rebecca Notman; Jamshed Anwar
Breaching the skins barrier function by design is an important strategy for delivering drugs and vaccines to the body. However, while there are many proposed approaches for reversibly breaching the skin barrier, our understanding of the molecular processes involved is still rudimentary. Molecular simulation offers an unprecedented molecular-level resolution with an ability to reproduce molecular and bulk level properties. We review the basis of the molecular simulation methodology and give applications of relevance to the skin lipid barrier, focusing on permeation of molecules and chemical approaches for breaching the lipid barrier by design. The bulk kinetic model based on Ficks Law describing absorption of a drug through skin has been reconciled with statistical mechanical quantities such as the local excess chemical potential and local diffusion coefficient within the membrane structure. Applications of molecular simulation reviewed include investigations of the structure and dynamics of simple models of skin lipids, calculation of the permeability of molecules in simple model membranes, and mechanisms of action of the penetration enhancers, DMSO, ethanol and oleic acid. The studies reviewed illustrate the power and potential of molecular simulation to yield important physical insights, inform and rationalize experimental studies, and to predict structural changes, and kinetic and thermodynamic quantities.
Langmuir | 2009
Rebecca Notman; Tiffany R. Walsh
The interactions of silica surfaces with water and biomolecules are of considerable significance in bio- and nanotechnology and in geochemistry. An important goal in the fields of biomineralization and biomimetics is to fine-tune these interactions for the control, e.g., of assembly of materials at the nanoscale. Here we report molecular dynamics simulations of fully hydroxylated alpha-quartz (1010), (0001), and (0111) surfaces in explicit water. We also present free energy estimates of adsorbing water and analogues of amino acid side chains onto the quartz (1010) surface. We find that at least two layers of structured water form on the surface, which is driven by the formation of a strong hydrogen bond network at the interface. Interestingly, we find that the free energy change to move methane (analogue of the side chain of alanine) from bulk water to the (1010) interface is favorable. We ascribe this to the presence of microscopic voids on the surface, which can accommodate small hydrophobic moieties and shield them from the solvent. These observations draw some useful insights into the possible mechanisms by which biomolecules, in particular peptides and proteins, bind to quartz and other silica surfaces.
ACS Nano | 2013
Mariarosa Mazza; Rebecca Notman; Jamshed Anwar; Alison Rodger; Matthew R. Hicks; Gary N. Parkinson; Dave McCarthy; Tina Daviter; Julian Moger; Natalie L. Garrett; Tania L. Mead; Michael A. Briggs; Andreas G. Schätzlein; Ijeoma F. Uchegbu
The delivery of therapeutic peptides and proteins to the central nervous system is the biggest challenge when developing effective neuropharmaceuticals. The central issue is that the blood-brain barrier is impermeable to most molecules. Here we demonstrate the concept of employing an amphiphilic derivative of a peptide to deliver the peptide into the brain. The key to success is that the amphiphilic peptide should by design self-assemble into nanofibers wherein the active peptide epitope is tightly wrapped around the nanofiber core. The nanofiber form appears to protect the amphiphilic peptide from degradation while in the plasma, and the amphiphilic nature of the peptide promotes its transport across the blood-brain barrier. Therapeutic brain levels of the amphiphilic peptide are achieved with this strategy, compared with the absence of detectable peptide in the brain and the consequent lack of a therapeutic response when the underivatized peptide is administered.
Biophysical Journal | 2008
Rebecca Notman; Jamshed Anwar; Willem J. Briels; Massimo G. Noro; Wouter K. den Otter
Transmembrane pore formation is central to many biological processes such as ion transport, cell fusion, and viral infection. Furthermore, pore formation in the ceramide bilayers of the stratum corneum may be an important mechanism by which penetration enhancers such as dimethylsulfoxide (DMSO) weaken the barrier function of the skin. We have used the potential of mean constraint force (PMCF) method to calculate the free energy of pore formation in ceramide bilayers in both the innate gel phase and in the DMSO-induced fluidized state. Our simulations show that the fluid phase bilayers form archetypal water-filled hydrophilic pores similar to those observed in phospholipid bilayers. In contrast, the rigid gel-phase bilayers develop hydrophobic pores. At the relatively small pore diameters studied here, the hydrophobic pores are empty rather than filled with bulk water, suggesting that they do not compromise the barrier function of ceramide membranes. A phenomenological analysis suggests that these vapor pores are stable, below a critical radius, because the penalty of creating water-vapor and tail-vapor interfaces is lower than that of directly exposing the strongly hydrophobic tails to water. The PMCF free energy profile of the vapor pore supports this analysis. The simulations indicate that high DMSO concentrations drastically impair the barrier function of the skin by strongly reducing the free energy required for pore opening.
Biomacromolecules | 2010
Rebecca Notman; Ersin Emre Oren; Candan Tamerler; Mehmet Sarikaya; Ram Samudrala; Tiffany R. Walsh
We use replica-exchange molecular dynamics (REMD) to interrogate molecular structures and properties of four engineered dodecapeptides (in solution, in the absence of a surface) that have been shown to bind to quartz with different propensities. We find that all of the strong-binding peptides feature some polyproline type II secondary structure, have less conformational freedom, and feature fewer intrapeptide hydrogen bonds compared with the weak binder. The regions of contiguous proline content in a given sequence appear to play a role in fostering some of these properties of the strong binders. For preliminary insights into quartz binding, we perform lattice-matching studies between a grid corresponding with the quartz (100) surface and the strong-binding peptide REMD structures. Our findings indicate a commonality among the putative contact residues, even for peptide structures with very different backbone conformations. Furthermore, interpeptide interactions in solution are studied. Our preliminary findings indicate that the strong-binder interpeptide contacts are dominated by weak, nonspecific hydrophobic interactions, while the weak-binding peptide shows more variable behavior due to the distribution of charged residues. In summary, the solution structures of peptides appear to be significant. We propose that these differences in their intra- and interpeptide interactions can influence their propensity to bind onto a solid substrate.
Journal of Biological Chemistry | 2011
Philippa Parsons; Sophie Jane Gilbert; Anne Vaughan-Thomas; David A. Sorrell; Rebecca Notman; Mark Bishop; Anthony Joseph Hayes; Deborah Jane Mason; Victor Colin Duance
Type IX collagen is covalently bound to the surface of type II collagen fibrils within the cartilage extracellular matrix. The N-terminal, globular noncollagenous domain (NC4) of the α1(IX) chain protrudes away from the surface of the fibrils into the surrounding matrix and is available for molecular interactions. To define these interactions, we used the NC4 domain in a yeast two-hybrid screen of a human chondrocyte cDNA library. 73% of the interacting clones encoded fibronectin. The interaction was confirmed using in vitro immunoprecipitation and was further characterized by surface plasmon resonance. Using whole and pepsin-derived preparations of type IX collagen, the interaction was shown to be specific for the NC4 domain with no interaction with the triple helical collagenous domains. The interaction was shown to be of high affinity with nanomolar Kd values. Analysis of the fibronectin-interacting clones indicates that the constant domain is the likely site of interaction. Type IX collagen and fibronectin were shown to co-localize in cartilage. This novel interaction between the NC4 domain of type IX collagen and fibronectin may represent an in vivo interaction in cartilage that could contribute to the matrix integrity of the tissue.
Biochemistry | 2012
Andrew J. Beevers; Anthony Nash; Martha Salazar-Cancino; David J. Scott; Rebecca Notman; Ann M. Dixon
Receptor tyrosine kinases bind ligands such as cytokines, hormones, and growth factors and regulate key cellular processes, including cell division. They are also implicated in the development of many types of cancer. One such example is the Neu receptor tyrosine kinase found in rats (homologous to the human ErbB2 protein), which can undergo a valine to glutamic acid (V(664)E) mutation at the center of its α-helical transmembrane domain. This substitution results in receptor activation and oncogenesis. The molecular basis of this dramatic change in behavior upon introduction of the V(664)E mutation has been difficult to pin down, with conflicting results reported in the literature. Here we report the first quantitative, thermodynamic analysis of dimerization and biophysical characterization of the rat Neu transmembrane domain and several mutants in a range of chemical environments. These data have allowed us to identify the effects of the V(664)E mutation in the isolated TM domain with respect to protein-protein and protein-lipid interactions, membrane insertion, and secondary structure. We also report the results from a 100 ns atomistic molecular dynamics simulation of the Neu transmembrane domain in a model membrane bilayer (dipalmitoylphosphatidylcholine). The results from simulation and experiment are in close agreement and suggest that, in the model systems investigated, the V(664)E mutation leads to a weakening of the TM dimer and a change in sequence-dependent interactions. These results are contrary to recent results obtained in mammalian membranes, and the implications of this are discussed.
Biomacromolecules | 2015
Thomas R. Congdon; Bethany T. Dean; James Kasperczak-Wright; Caroline I. Biggs; Rebecca Notman; Matthew I. Gibson
Nature has evolved many elegant solutions to enable life to flourish at low temperatures by either allowing (tolerance) or preventing (avoidance) ice formation. These processes are typically controlled by ice nucleating proteins or antifreeze proteins, which act to either promote nucleation, prevent nucleation or inhibit ice growth depending on the specific need, respectively. These proteins can be expensive and their mechanisms of action are not understood, limiting their translation, especially into biomedical cryopreservation applications. Here well-defined poly(vinyl alcohol), synthesized by RAFT/MADIX polymerization, is investigated for its ice nucleation inhibition (INI) activity, in contrast to its established ice growth inhibitory properties and compared to other synthetic polymers. It is shown that ice nucleation inhibition activity of PVA has a strong molecular weight dependence; polymers with a degree of polymerization below 200 being an effective inhibitor at just 1 mg.mL–1. Other synthetic and natural polymers, both with and without hydroxyl-functional side chains, showed negligible activity, highlighting the unique ice/water interacting properties of PVA. These findings both aid our understanding of ice nucleation but demonstrate the potential of engineering synthetic polymers as new biomimetics to control ice formation/growth processes
PLOS ONE | 2015
David J. Bray; Tiffany R. Walsh; Massimo G. Noro; Rebecca Notman
Keratins are cytoskeletal proteins that hierarchically arrange into filaments, starting with the dimer sub-unit. They are integral to the structural support of cells, in skin, hair and nails. In skin, keratin is thought to play a critical role in conferring the barrier properties and elasticity of skin. In general, the keratin dimer is broadly described by a tri-domain structure: a head, a central rod and a tail. As yet, no atomistic-scale picture of the entire dimer structure exists; this information is pivotal for establishing molecular-level connections between structure and function in intermediate filament proteins. The roles of the head and tail domains in facilitating keratin filament assembly and function remain as open questions. To address these, we report results of molecular dynamics simulations of the entire epithelial human K1/K10 keratin dimer. Our findings comprise: (1) the first three-dimensional structural models of the complete dimer unit, comprising of the head, rod and tail domains; (2) new insights into the chirality of the rod-domain twist gained from analysis of the full domain structure; (3) evidence for tri-subdomain partitioning in the head and tail domains; and, (4) identification of the residue characteristics that mediate non-covalent contact between the chains in the dimer. Our findings are immediately applicable to other epithelial keratins, such as K8/K18 and K5/K14, and to intermediate filament proteins in general.