Rebecca P. Sumner
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rebecca P. Sumner.
Journal of General Virology | 2013
Geoffrey L. Smith; Camilla T. O. Benfield; Carlos Maluquer de Motes; Michela Mazzon; Stuart W. J. Ember; Brian J. Ferguson; Rebecca P. Sumner
Virus infection of mammalian cells is sensed by pattern recognition receptors and leads to an innate immune response that restricts virus replication and induces adaptive immunity. In response, viruses have evolved many countermeasures that enable them to replicate and be transmitted to new hosts, despite the host innate immune response. Poxviruses, such as vaccinia virus (VACV), have large DNA genomes and encode many proteins that are dedicated to host immune evasion. Some of these proteins are secreted from the infected cell, where they bind and neutralize complement factors, interferons, cytokines and chemokines. Other VACV proteins function inside cells to inhibit apoptosis or signalling pathways that lead to the production of interferons and pro-inflammatory cytokines and chemokines. In this review, these VACV immunomodulatory proteins are described and the potential to create more immunogenic VACV strains by manipulation of the gene encoding these proteins is discussed.
PLOS Pathogens | 2011
Leonie Unterholzner; Rebecca P. Sumner; Marcin Baran; Hongwei Ren; Daniel Santos Mansur; Nollaig M. Bourke; Felix Randow; Geoffrey L. Smith; Andrew G. Bowie
Recognition of viruses by pattern recognition receptors (PRRs) causes interferon-β (IFN-β) induction, a key event in the anti-viral innate immune response, and also a target of viral immune evasion. Here the vaccinia virus (VACV) protein C6 is identified as an inhibitor of PRR-induced IFN-β expression by a functional screen of select VACV open reading frames expressed individually in mammalian cells. C6 is a member of a family of Bcl-2-like poxvirus proteins, many of which have been shown to inhibit innate immune signalling pathways. PRRs activate both NF-κB and IFN regulatory factors (IRFs) to activate the IFN-β promoter induction. Data presented here show that C6 inhibits IRF3 activation and translocation into the nucleus, but does not inhibit NF-κB activation. C6 inhibits IRF3 and IRF7 activation downstream of the kinases TANK binding kinase 1 (TBK1) and IκB kinase-ε (IKKε), which phosphorylate and activate these IRFs. However, C6 does not inhibit TBK1- and IKKε-independent IRF7 activation or the induction of promoters by constitutively active forms of IRF3 or IRF7, indicating that C6 acts at the level of the TBK1/IKKε complex. Consistent with this notion, C6 immunoprecipitated with the TBK1 complex scaffold proteins TANK, SINTBAD and NAP1. C6 is expressed early during infection and is present in both nucleus and cytoplasm. Mutant viruses in which the C6L gene is deleted, or mutated so that the C6 protein is not expressed, replicated normally in cell culture but were attenuated in two in vivo models of infection compared to wild type and revertant controls. Thus C6 contributes to VACV virulence and might do so via the inhibition of PRR-induced activation of IRF3 and IRF7.
PLOS Pathogens | 2013
Daniel Santos Mansur; Carlos Maluquer de Motes; Leonie Unterholzner; Rebecca P. Sumner; Brian J. Ferguson; Hongwei Ren; Pavla Strnadova; Andrew G. Bowie; Geoffrey L. Smith
The transcription factor NF-κB is essential for immune responses against pathogens and its activation requires the phosphorylation, ubiquitination and proteasomal degradation of IκBα. Here we describe an inhibitor of NF-κB from vaccinia virus that has a closely related counterpart in variola virus, the cause of smallpox, and mechanistic similarity with the HIV protein Vpu. Protein A49 blocks NF-κB activation by molecular mimicry and contains a motif conserved in IκBα which, in IκBα, is phosphorylated by IKKβ causing ubiquitination and degradation. Like IκBα, A49 binds the E3 ligase β-TrCP, thereby preventing ubiquitination and degradation of IκBα. Consequently, A49 stabilised phosphorylated IκBα (p-IκBα) and its interaction with p65, so preventing p65 nuclear translocation. Serine-to-alanine mutagenesis within the IκBα-like motif of A49 abolished β-TrCP binding, stabilisation of p-IκBα and inhibition of NF-κB activation. Remarkably, despite encoding nine other inhibitors of NF-κB, a VACV lacking A49 showed reduced virulence in vivo.
Journal of General Virology | 2013
Brian J. Ferguson; Camilla T. O. Benfield; Hongwei Ren; Vivian H. Lee; Gordon L. Frazer; Pavla Strnadova; Rebecca P. Sumner; Geoffrey L. Smith
Vaccinia virus (VACV) expresses many proteins that are non-essential for virus replication but promote virulence by inhibiting components of the host immune response to infection. These immunomodulators include a family of proteins that have, or are predicted to have, a structure related to the B-cell lymphoma (Bcl)-2 protein. Five members of the VACV Bcl-2 family (N1, B14, A52, F1 and K7) have had their crystal structure solved, others have been characterized and a function assigned (C6, A46), and others are predicted to be Bcl-2 proteins but are uncharacterized hitherto (N2, B22, C1). Data presented here show that N2 is a nuclear protein that is expressed early during infection and inhibits the activation of interferon regulatory factor (IRF)3. Consistent with its nuclear localization, N2 inhibits IRF3 downstream of the TANK-binding kinase (TBK)-1 and after IRF3 translocation into the nucleus. A mutant VACV strain Western Reserve lacking the N2L gene (vΔN2) showed normal replication and spread in cultured cells compared to wild-type parental (vN2) and revertant (vN2-rev) viruses, but was attenuated in two murine models of infection. After intranasal infection, the vΔN2 mutant induced lower weight loss and signs of illness, and virus was cleared more rapidly from the infected tissue. In the intradermal model of infection, vΔN2 induced smaller lesions that were resolved more rapidly. In summary, the N2 protein is an intracellular virulence factor that inhibits IRF3 activity in the nucleus.
Journal of General Virology | 2013
Rebecca P. Sumner; Hongwei Ren; Geoffrey L. Smith
Vectors based on vaccinia virus (VACV), the vaccine used to eradicate smallpox, are currently popular candidates for the vaccination against numerous infectious diseases including malaria and AIDS. Although VACV induces robust cellular and humoral responses, enhancing the safety and efficacy of these vectors remains an important area of research. Here, we describe the enhanced immunogenicity of a recombinant VACV Western Reserve (WR) strain lacking the immunomodulatory protein C6 (vΔC6). Intradermal infection of mice with vΔC6 was shown previously to induce smaller lesions, indicating viral attenuation, and this was confirmed here using a different inoculation dose. In addition, data presented show that vaccination with vΔC6 provided better protection against challenge with a lethal dose of VACV WR, indicating this virus is a better vaccine. Increased protection was not due to improved humoral responses, but instead enhanced cytotoxic activity of T-cells 1 month post-inoculation in the spleens of vΔC6-vaccinated mice.
Journal of Virology | 2014
Rebecca P. Sumner; C. Maluquer de Motes; David L. Veyer; Geoffrey L. Smith
ABSTRACT The transcription factor nuclear factor kappa light-chain enhancer of activated B cells (NF-κB) plays a critical role in host defense against viral infection by inducing the production of proinflammatory mediators and type I interferon. Consequently, viruses have evolved many mechanisms to block its activation. The poxvirus vaccinia virus (VACV) encodes numerous inhibitors of NF-κB activation that target multiple points in the signaling pathway. A derivative of VACV strain Copenhagen, called vv811, lacking 55 open reading frames in the left and right terminal regions of the genome was reported to still inhibit NF-κB activation downstream of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β), suggesting the presence of one or more additional inhibitors. In this study, we constructed a recombinant vv811 lacking the recently described NF-κB inhibitor A49 (vv811ΔA49), yielding a virus that lacked all currently described inhibitors downstream of TNF-α and IL-1β. Unlike vv811, vv811ΔA49 no longer inhibited degradation of the phosphorylated inhibitor of κBα and p65 translocated into the nucleus. However, despite this translocation, vv811ΔA49 still inhibited TNF-α- and IL-1β-induced NF-κB-dependent reporter gene expression and the transcription and production of cytokines induced by these agonists. This inhibition did not require late viral gene expression. These findings indicate the presence of another inhibitor of NF-κB that is expressed early during infection and acts by a novel mechanism downstream of p65 translocation into the nucleus.
Journal of General Virology | 2014
David L. Veyer; Carlos Maluquer de Motes; Rebecca P. Sumner; Louisa Ludwig; Benjamin F. Johnson; Geoffrey L. Smith
Vaccinia virus (VACV) is a large dsDNA virus encoding ~200 proteins, several of which inhibit apoptosis. Here, a comparative study of anti-apoptotic proteins N1, F1, B13 and Golgi anti-apoptotic protein (GAAP) in isolation and during viral infection is presented. VACVs strains engineered to lack each gene separately still blocked apoptosis to some degree because of functional redundancy provided by the other anti-apoptotic proteins. To overcome this redundancy, we inserted each gene separately into a VACV strain (vv811) that lacked all these anti-apoptotic proteins and that induced apoptosis efficiently during infection. Each protein was also expressed in cells using lentivirus vectors. In isolation, each VACV protein showed anti-apoptotic activity in response to specific stimuli, as measured by immunoblotting for cleaved poly(ADP ribose) polymerase-1 and caspase-3 activation. Of the proteins tested, B13 was the most potent inhibitor, blocking both intrinsic and extrinsic stimuli, whilst the activity of the other proteins was largely restricted to inhibition of intrinsic stimuli. In addition, B13 and F1 were effective blockers of apoptosis induced by vv811 infection. Finally, whilst differences in induction of apoptosis were barely detectable during infection with VACV strain Western Reserve compared with derivative viruses lacking individual anti-apoptotic genes, several of these proteins reduced activation of caspase-3 during infection by vv811 strains expressing these proteins. These results illustrated that vv811 was a useful tool to determine the role of VACV proteins during infection and that whilst all of these proteins have some anti-apoptotic activity, B13 was the most potent.
Immunology | 2015
Hongwei Ren; Brian J. Ferguson; Carlos Maluquer de Motes; Rebecca P. Sumner; Laura Harman; Geoffrey L. Smith
Factors influencing T‐cell responses are important for vaccine development but are incompletely understood. Here, vaccinia virus (VACV) protein N1 is shown to impair the development of both effector and memory CD8+ T cells and this correlates with its inhibition of nuclear factor‐κB (NF‐κB) activation. Infection with VACVs that either have the N1L gene deleted (vΔN1) or contain a I6E mutation (vN1.I6E) that abrogates its inhibition of NF‐κB resulted in increased central and memory CD8+ T‐cell populations, increased CD8+ T‐cell cytotoxicity and lower virus titres after challenge. Furthermore, CD8+ memory T‐cell function was increased following infection with vN1.I6E, with more interferon‐γ production and greater protection against VACV infection following passive transfer to naive mice, compared with CD8+ T cells from mice infected with wild‐type virus (vN1.WT). This demonstrates the importance of NF‐κB activation within infected cells for long‐term CD8+ T‐cell memory and vaccine efficacy. Further, it provides a rationale for deleting N1 from VACV vectors to enhance CD8+ T‐cell immunogenicity, while simultaneously reducing virulence to improve vaccine safety.
PLOS Pathogens | 2016
Jennifer H. Stuart; Rebecca P. Sumner; Yongxu Lu; Joseph S. Snowden; Geoffrey L. Smith
The type I interferon (IFN) response is a crucial innate immune signalling pathway required for defense against viral infection. Accordingly, the great majority of mammalian viruses possess means to inhibit this important host immune response. Here we show that vaccinia virus (VACV) strain Western Reserve protein C6, is a dual function protein that inhibits the cellular response to type I IFNs in addition to its published function as an inhibitor of IRF-3 activation, thereby restricting type I IFN production from infected cells. Ectopic expression of C6 inhibits the induction of interferon stimulated genes (ISGs) in response to IFNα treatment at both the mRNA and protein level. C6 inhibits the IFNα-induced Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway at a late stage, downstream of STAT1 and STAT2 phosphorylation, nuclear translocation and binding of the interferon stimulated gene factor 3 (ISGF3) complex to the interferon stimulated response element (ISRE). Mechanistically, C6 associates with the transactivation domain of STAT2 and this might explain how C6 inhibits the type I IFN signalling very late in the pathway. During virus infection C6 reduces ISRE-dependent gene expression despite the presence of the viral protein phosphatase VH1 that dephosphorylates STAT1 and STAT2. The ability of a cytoplasmic replicating virus to dampen the immune response within the nucleus, and the ability of viral immunomodulators such as C6 to inhibit multiple stages of the innate immune response by distinct mechanisms, emphasizes the intricacies of host-pathogen interactions and viral immune evasion.
Journal of General Virology | 2014
Carlos Maluquer de Motes; Torben Schiffner; Rebecca P. Sumner; Geoffrey L. Smith
Ubiquitylation is a covalent post-translational modification that regulates protein stability and is involved in many biological functions. Proteins may be modified with mono-ubiquitin or ubiquitin chains. Viruses have evolved multiple mechanisms to perturb the cell ubiquitin system and manipulate it to their own benefit. Here, we report ubiquitylation of vaccinia virus (VACV) protein N1. N1 is an inhibitor of the nuclear factor NF-κB and apoptosis that contributes to virulence, has a Bcl-2-like fold, and is highly conserved amongst orthopoxviruses. The interaction between N1 and ubiquitin occurs at endogenous protein levels during VACV infection and following ectopic expression of N1. Biochemical analysis demonstrated that N1 is covalently ubiquitylated, and heterodimers of ubiquitylated and non-ubiquitylated N1 monomers were identified, suggesting that ubiquitylation does not inhibit N1 dimerization. Studies with other VACV Bcl-2 proteins, such as C6 or B14, revealed that although these proteins also interact with ubiquitin, these interactions are non-covalent. Finally, mutagenesis of N1 showed that ubiquitylation occurs in a conventional lysine-dependent manner at multiple acceptor sites because only an N1 allele devoid of lysine residues remained unmodified. Taken together, we described a previously uncharacterized modification of the VACV protein N1 that provided a new layer of complexity to the biology of this virulence factor, and provided another example of the intricate interplay between poxviruses and the host ubiquitin system.