Rebecca S. Robinson
University of Rhode Island
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rebecca S. Robinson.
Nature | 2012
Heiko Pälike; Mitchell Lyle; Hiroshi Nishi; Isabella Raffi; Andy Ridgwell; Kusali Gamage; Adam Klaus; Gary D Acton; Louise Anderson; Jan Backman; Jack G. Baldauf; Catherine Beltran; Steven M. Bohaty; Paul R. Bown; W.H. Busch; James E T Channell; Cecily O. J. Chun; Margaret Lois Delaney; Pawan Dewangan; Tom Dunkley Jones; Kirsty M. Edgar; Helen F Evans; Peter Fitch; Gavin L. Foster; Nikolaus Gussone; Hitoshi Hasegawa; Ed C. Hathorne; Hiroki Hayashi; Jens O. Herrle; Ann Holbourn
Atmospheric carbon dioxide concentrations and climate are regulated on geological timescales by the balance between carbon input from volcanic and metamorphic outgassing and its removal by weathering feedbacks; these feedbacks involve the erosion of silicate rocks and organic-carbon-bearing rocks. The integrated effect of these processes is reflected in the calcium carbonate compensation depth, which is the oceanic depth at which calcium carbonate is dissolved. Here we present a carbonate accumulation record that covers the past 53 million years from a depth transect in the equatorial Pacific Ocean. The carbonate compensation depth tracks long-term ocean cooling, deepening from 3.0–3.5 kilometres during the early Cenozoic (approximately 55 million years ago) to 4.6 kilometres at present, consistent with an overall Cenozoic increase in weathering. We find large superimposed fluctuations in carbonate compensation depth during the middle and late Eocene. Using Earth system models, we identify changes in weathering and the mode of organic-carbon delivery as two key processes to explain these large-scale Eocene fluctuations of the carbonate compensation depth.
Paleoceanography | 2004
Rebecca S. Robinson; Brigitte G. Brunelle; Daniel M. Sigman
Holocene in the Indian sector is smaller than in previous measurements. These data suggest no change in the degree of nitrate utilization in the Atlantic sector and at most a 20% increase (from 25 to 45%) in the Indian sector. The new measurements suggest that, during the last ice age in the Atlantic sector of the Antarctic, the atmospheric source of biologically available iron was not so great as to become significant relative to the iron supply from below. Given the apparent spatial variability in the degree of nitrate drawdown, more work is required to develop an adequate picture of the glacial Antarctic nutrient field. INDEX TERMS: 4806 Oceanography: Biological and Chemical: Carbon cycling; 4845 Oceanography: Biological and Chemical: Nutrients and nutrient cycling; 4894 Oceanography: Biological and Chemical: Instruments and techniques; 9310 Information Related to Geographic Region: Antarctica;
Paleoceanography | 2012
Rebecca S. Robinson; Markus Kienast; Ana Luiza Spadano Albuquerque; Mark A. Altabet; Sergio Contreras; Ricardo De Pol Holz; Nathalie Dubois; Roger Francois; Eric D. Galbraith; Ting-Chang Hsu; T. S. Ivanochko; Samuel L. Jaccard; Shuh-Ji Kao; Thorsten Kiefer; Stephanie S. Kienast; Moritz F. Lehmann; Philippe Martinez; Matthew D. McCarthy; Jürgen Möbius; Tom F. Pedersen; Tracy M. Quan; Evgeniya Ryabenko; Andreas Schmittner; Ralph R. Schneider; Aya Schneider-Mor; Masahito Shigemitsu; Daniel J. Sinclair; Christopher J. Somes; Anja S Studer; Robert C. Thunell
Key Points: Use of sedimentary nitrogen isotopes is examined; On average, sediment 15N/14N increases approx. 2 per mil during early burial; Isotopic alteration scales with water depth Abstract: Nitrogen isotopes are an important tool for evaluating past biogeochemical cycling from the paleoceanographic record. However, bulk sedimentary nitrogen isotope ratios, which can be determined routinely and at minimal cost, may be altered during burial and early sedimentary diagenesis, particularly outside of continental margin settings. The causes and detailed mechanisms of isotopic alteration are still under investigation. Case studies of the Mediterranean and South China Seas underscore the complexities of investigating isotopic alteration. In an effort to evaluate the evidence for alteration of the sedimentary N isotopic signal and try to quantify the net effect, we have compiled and compared data demonstrating alteration from the published literature. A >100 point comparison of sediment trap and surface sedimentary nitrogen isotope values demonstrates that, at sites located off of the continental margins, an increase in sediment 15N/14N occurs during early burial, likely at the seafloor. The extent of isotopic alteration appears to be a function of water depth. Depth-related differences in oxygen exposure time at the seafloor are likely the dominant control on the extent of N isotopic alteration. Moreover, the compiled data suggest that the degree of alteration is likely to be uniform through time at most sites so that bulk sedimentary isotope records likely provide a good means for evaluating relative changes in the global N cycle.
Science | 2009
Haojia Ren; Daniel M. Sigman; Anna Nele Meckler; Birgit Plessen; Rebecca S. Robinson; Yair Rosenthal; Gerald H. Haug
Fixed nitrogen (N) is a limiting nutrient for algae in the low-latitude ocean, and its oceanic inventory may have been higher during ice ages, thus helping to lower atmospheric CO2 during those intervals. In organic matter within planktonic foraminifera shells in Caribbean Sea sediments, we found that the 15N/14N ratio from the last ice age is higher than that from the current interglacial, indicating a higher nitrate 15N/14N ratio in the Caribbean thermocline. This change and other species-specific differences are best explained by less N fixation in the Atlantic during the last ice age. The fixation decrease was most likely a response to a known ice age reduction in ocean N loss, and it would have worked to balance the ocean N budget and to curb ice age–interglacial change in the N inventory.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Meytal B. Higgins; Rebecca S. Robinson; Jonathan M. Husson; Susan J. Carter; Ann Pearson
The Mesozoic is marked by several widespread occurrences of intense organic matter burial. Sediments from the largest of these events, the Cenomanian–Turonian Oceanic Anoxic Event (OAE 2) are characterized by lower nitrogen isotope ratios than are seen in modern marine settings. It has remained a challenge to describe a nitrogen cycle that could achieve such isotopic depletion. Here we use nitrogen-isotope ratios of porphyrins to show that eukaryotes contributed the quantitative majority of export production throughout OAE 2, whereas cyanobacteria contributed on average approximately 20%. Such data require that any explanation for the OAE nitrogen cycle and its isotopic values be consistent with a eukaryote-dominated ecosystem. Our results agree with models that suggest the OAEs were high-productivity events, supported by vigorous upwelling. Upwelling of anoxic deep waters would have supplied reduced N species (i.e., ) to primary producers. We propose that new production during OAE 2 primarily was driven by direct -assimilation supplemented by diazotrophy, whereas chemocline denitrification and anammox quantitatively consumed and . A marine nitrogen reservoir dominated by , in combination with known kinetic isotope effects, could lead to eukaryotic biomass depleted in 15N.
Geophysical Research Letters | 2010
Peter J. DiFiore; Daniel M. Sigman; K. L. Karsh; Thomas W. Trull; Robert B. Dunbar; Rebecca S. Robinson
Recent studies provide seasonally and spatially resolved information on the isotopic characteristics of nitrate supply and N cycling in Southern Ocean surface waters. The new data improve our understanding of the nitrate supply to the Antarctic surface and its isotopic characteristics, especially with regard to the summertime subsurface minimum temperature (T min ) layer in the Antarctic. We use these findings to update and compile estimates of the N isotope effect of nitrate assimilation, e, in the Southern Ocean near Australia. A poleward decrease in e emerges, from 8-9‰ in the Subantarctic Zone (SAZ, 40-52°S) to similar to 5‰ in the Polar Antarctic Zone (PAZ, ~66°S). e is strongly correlated with mixed layer depth at the time of sampling. We hypothesize that the correlation is driven by the physiological response of diatoms to light availability, with light limitation leading to higher cellular efflux of nitrate and thus higher e.
Marine Geology | 2002
Rebecca S. Robinson; Richard W. Murray
Abstract Distinctive light–dark color cycles in sediment beneath the Benguela Current Upwelling System indicate repetitive alternations in sediment delivery and deposition. Geochemical proxies for paleoproductivity and for depositional conditions were employed to investigate the paleoceanographic processes involved in creating these cycles in three mid-Pleistocene intervals from ODP Sites 1082 and 1084. Concentrations of total organic carbon (TOC) vary between 3.5 and 17.1%. Concentrations of CaCO3 vary inversely to TOC and Al, which suggests that both carbonate dissolution and terrigenous dilution contribute to the light–dark cycles. Opal concentrations are independent of both TOC and CaCO3, therefore eliminating diatom production and lateral transport of shelf material as causes of the light–dark cycles. δ13Corg and δ15Ntot values do not vary across light–dark sediment intervals, implying that the extent of relative nutrient utilization did not change. The stable δ15Ntot values represent a balanced change in nitrate supply and export production and therefore indicate that productivity was elevated during deposition of the TOC-rich layers. Parallel changes in concentrations of indicator trace elements and TOC imply that changes in organic matter delivery influenced geochemical processes on the seafloor by controlling consumption of pore water oxygen. Cu, Ni, and Zn are enriched in the darker sediment as a consequence of greater organic matter delivery. Redox-sensitive metals vary due to loss (Mn and Ba) or enrichment (Mo) under reducing conditions created by TOC oxidation. Organic matter delivery impacts subsequent geochemical changes such as carbonate dissolution, sulfate reduction and the concentration of metals. Thus, export production is considered ultimately responsible for the generation of the color cycles.
Nitrogen in the Marine Environment (2nd Edition) | 2008
Eric D. Galbraith; Daniel M. Sigman; Rebecca S. Robinson; Thomas F. Pedersen
This chapter reviews the ongoing efforts to use sediment and ice core records to understand the dynamics of oceanic fixed nitrogen (N), focusing on recent glacial–interglacial cycles. Research has, up to this point, followed the reductionist approach of trying to reconstruct either changes in the ocean N budget (largely through low latitude records) or changes in the internal cycling and distribution of N (largely through high latitude records). However, evidence is building for a coupling of high and low latitude changes, connecting the processes that control the distribution of N in the ocean with those that control the size of the whole ocean N inventory. Discussion begins by considering how the nitrogen cycle of times past may have differed from that of today, followed by an overview of how nitrogen cycle features are recorded in marine sediments. It may seem as though the current view of the past marine N-cycle is highly uncertain, but this should be viewed in the context of the last several decades. The first proposition that climate change can influence the marine N-cycle was made and points out that the short residence time of fixed marine N made it a good candidate for change over glacial–interglacial cycles.
Analytical Chemistry | 2009
Meytal B. Higgins; Rebecca S. Robinson; Karen L. Casciotti; Matthew R. McIlvin; Ann Pearson
We describe a new method for analysis of the nitrogen isotopic composition of sedimentary porphyrins. This method involves separation and purification of geoporphyrins from sediment samples using liquid chromatography and HPLC, oxidation of the nitrogen within porphyrin-enriched fractions using a two-step process, and isotopic analysis of the resulting nitrate using the denitrifier method. By analysis of these degradation products of chlorophylls, we are able to measure an isotopic signature that reflects the nitrogen utilized by primary producers. The high sensitivity of the denitrifier method allows measurement of small samples that contain low concentrations of porphyrins. Extraction of only 50 nmol of nitrogen (nmol N) allows the following five analyses to be made (each on approximately 10 nmol N): nitrogen concentration, an assessment of potential contamination by nonporphyrin N, and three replicate isotopic measurements. The measured values of delta15N have an average analytical precision of +/-0.5 per thousand (1sigma) and an average contribution from Rayleigh fractionation of 0.7 per thousand from incomplete oxidation of porphyrin N to nitrate. The overall method will enable high-resolution records of delta15N values to be obtained for geological and ecological applications.
Paleoceanography | 2014
Rebecca S. Robinson; Mark A. Brzezinski; Charlotte P. Beucher; Matthew G. Horn; Patrick Bedsole
The Southern Ocean plays a critical role in the air-sea CO2 balance through biological and physical mechanisms. Vertical supply of deep waters returns nutrients and CO2 to the surface and stimulates phytoplankton growth. Photosynthesis in the Southern Ocean is limited by iron and only a fraction of the carbon and nutrients that return to the surface are consumed for potential sequestration in the deep sea. Here we present the most spatially extensive data set of silicon and nitrogen isotope measurements from diatom frustules to date to examine the controls on nutrient drawdown during the last glacial period and across the glacial termination in both the Antarctic and Subantarctic zones. The new data confirm existing views that differing silicon and nitrate consumption patterns in the Antarctic zone are likely the result, at least in part, of iron addition during the last glacial maximum (LGM). However, earlier in the glacial, a more coordinated response in the two proxy records, with both reflecting enhanced consumption during episodes of increased iron accumulation and export production, implies a different system response than observed for the LGM. A collapse of the expected equatorward gradient in silicon isotope values and contraction of the nitrogen isotope gradient during the deglaciation suggests that nutrient supply increased not only in the Antarctic Zone, but also in the Subantarctic, perhaps due to enhanced deep mixing locally. Enhanced deep water ventilation across the Southern Ocean likely increased the nutrient content of mode waters during the deglaciation.