Rebecca S.Y. Wong
Genzyme
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rebecca S.Y. Wong.
Molecular Pharmacology | 2008
Rebecca S.Y. Wong; Veronique Bodart; Markus Metz; Jean Labrecque; Gary J. Bridger; Simon P. Fricker
CXC chemokine receptor (CXCR)4 is an HIV coreceptor and a chemokine receptor that plays an important role in several physiological and pathological processes, including hematopoiesis, leukocyte homing and trafficking, metastasis, and angiogenesis. This receptor belongs to the class A family of G protein-coupled receptors and is a validated target for the development of a new class of antiretroviral therapeutics. This study compares the interactions of three structurally diverse small-molecule CXCR4 inhibitors with the receptor and is the first report of the molecular interactions of the nonmacrocyclic CXCR4 inhibitor (S)-N′-(1H-benzimidazol-2-ylmethyl)-N′-(5,6,7,8-tetrahydroquinolin-8-yl)butene-1,4-diamine (AMD11070). Fourteen CXCR4 single-site mutants representing amino acid residues that span the entire putative ligand binding pocket were used in this study. These mutants were used in binding studies to examine how each single-site mutation affected the ability of the inhibitors to compete with 125I-stromal-derived factor-1α binding. Our data suggest that these CXCR4 inhibitors bind to overlapping but not identical amino acid residues in the transmembrane regions of the receptor. In addition, our results identified amino acid residues that are involved in unique interactions with two of the CXCR4 inhibitors studied. These data suggest an extended binding pocket in the transmembrane regions close to the second extracellular loop of the receptor. Based on site-directed mutagenesis and molecular modeling, several potential binding modes were proposed for each inhibitor. These mechanistic studies might prove to be useful for the development of future generations of CXCR4 inhibitors with improved clinical pharmacology and safety profiles.
Clinical Infectious Diseases | 2009
Graeme Moyle; Edwin DeJesus; Marta Boffito; Rebecca S.Y. Wong; Colleen Gibney; Karin Badel; Ron MacFarland; Gary Calandra; Gary J. Bridger; Stephen Becker
BACKGROUND The X4 Antagonist Concept Trial investigates the safety and antiviral activity of AMD11070, a potent inhibitor of X4-tropic human immunodeficiency virus (HIV) in vitro in HIV-infected patients harboring X4-tropic virus. METHODS Patients enrolled in the study had an X4 virus population 2000 relative luminescence units (rlu; by the Monogram Trofile Assay) and an HIV-1 RNA level 5000 copies/mL. Patients received AMD11070 monotherapy for 10 days. Coreceptor tropism, plasma HIV-1 RNA level, and CD4 cell count were measured at study entry, on day 5, and on day 10. Daily predose and serial samples on the last day of treatment were obtained for determination of plasma AMD11070 concentration. RESULTS Ten patients were given AMD11070 monotherapy (200 mg to 8 patients and 100 mg to 2 patients) twice daily for 10 days. The median baseline CD4 cell count was 160 cells/mm(3), and the median HIV-1 RNA level was 91,447 copies/mL. Four of 9 evaluable patients achieved a reduction in X4 virus population of >or= rlu. The median change in X4 virus population at the end of treatment was -0.22 log(10) rlu (range, -1.90 to 0.23 log(10) rlu). Three of 4 patients who responded to therapy showed a tropism shift from dual- or mixed-tropic viruses to exclusively R5 virus by day 10. There were no drug-related serious adverse events, adverse events of greater than grade 2, or laboratory abnormalities. CONCLUSION These results demonstrate the activity of AMD11070, the first oral CXCR4 antagonist, against X4-tropic HIV-1. The drug was well tolerated, with no serious safety concerns. AMD11070 is on clinical hold because of histologic changes to the liver observed in long-term animal studies; additional preclinical safety assessments are pending.
Biochemical Pharmacology | 2009
Veronique Bodart; Virginia Anastassov; Marilyn C. Darkes; Stefan R. Idzan; Jean Labrecque; Gloria Lau; Renee M. Mosi; Kathleen S. Neff; Kim L. Nelson; Melanie Ruzek; Ketan Patel; Zefferino Santucci; Robert Scarborough; Rebecca S.Y. Wong; Gary Bridger; Ron MacFarland; Simon P. Fricker
CXCR4 is widely expressed in multiple cell types, and is involved in neonatal development, hematopoiesis, and lymphocyte trafficking and homing. Disruption of the CXCL12/CXCR4 interaction has been implicated in stem cell mobilization. Additionally CXCR4 is a co-receptor for HIV. Selective small molecule antagonists of CXCR4 therefore have therapeutic potential. AMD3465 is an N-pyridinylmethylene monocyclam CXCR4 antagonist which can block infection of T-tropic, CXCR4-using HIV. Using the CCRF-CEM T-cell line which expresses CXCR4 we have demonstrated that AMD3465 is an antagonist of SDF-1 ligand binding (K(i) of 41.7+/-1.2nM), and inhibits SDF-1 mediated signaling as shown by inhibition of GTP binding, calcium flux, and inhibition of chemotaxis. AMD3465 is selective for CXCR4 and does not inhibit chemokine-stimulated calcium flux in cells expressing CXCR3, CCR1, CCR2b, CCR4, CCR5 or CCR7, nor does it inhibit binding of LTB(4) to its receptor, BLT1. The pharmacokinetics of AMD3465 was investigated in mice and dogs. Absorption was rapid following subcutaneous administration. AMD3465 was cleared from dog plasma in a biphasic manner with a terminal half-life of 1.56-4.63h. Comparison of exposure to the intravenous and subcutaneous doses indicated 100% bioavailability following subcutaneous administration. AMD3465 caused leukocytosis when administered subcutaneously in mice and dogs, with peak mobilization occurring between 0.5 and 1.5h following subcutaneous dosing in mice and with maximum peak plasma concentration of compound preceding peak mobilization in dogs, indicating that AMD3465 has the potential to mobilize hematopoietic stem cells. These data demonstrate the therapeutic potential for the CXCR4 antagonist AMD3465.
Virology | 2011
Jean Labrecque; Markus Metz; Gloria Lau; Marilyn C. Darkes; Rebecca S.Y. Wong; David Bogucki; Bryon Carpenter; Gang Chen; Tong-Shuang Li; Susan Nan; Dominique Schols; Gary Bridger; Simon P. Fricker; Renato Skerlj
Based on the attrition rate of CCR5 small molecule antagonists in the clinic the discovery and development of next generation antagonists with an improved pharmacology and safety profile is necessary. Herein, we describe a combined molecular modeling, CCR5-mediated cell fusion, and receptor site-directed mutagenesis approach to study the molecular interactions of six structurally diverse compounds (aplaviroc, maraviroc, vicriviroc, TAK-779, SCH-C and a benzyloxycarbonyl-aminopiperidin-1-yl-butane derivative) with CCR5, a coreceptor for CCR5-tropic HIV-1 strains. This is the first study using an antifusogenic assay, a model of the interaction of the gp120 envelope protein with CCR5. This assay avoids the use of radioactivity and HIV infection assays, and can be used in a high throughput mode. The assay was validated by comparison with other established CCR5 assays. Given the hydrophobic nature of the binding pocket several binding models are suggested which could prove useful in the rational drug design of new lead compounds.
Biochemical Pharmacology | 2012
Renee Mosi; Virginia Anastassova; Jennifer Cox; Marilyn C. Darkes; Stefan R. Idzan; Jean Labrecque; Gloria Lau; Kim L. Nelson; Ketan Patel; Zefferino Santucci; Rebecca S.Y. Wong; Renato Skerlj; Gary J. Bridger; Dana Huskens; Dominique Schols; Simon P. Fricker
In order to enter and infect human cells HIV must bind to CD4 in addition to either the CXCR4 or the CCR5 chemokine receptor. AMD11070 was the first orally available small molecule antagonist of CXCR4 to enter the clinic. Herein we report the molecular pharmacology of AMD11070 which is a potent inhibitor of X4 HIV-1 replication and the gp120/CXCR4 interaction. Using the CCRF-CEM T cell line that endogenously expresses CXCR4 we have demonstrated that AMD11070 is an antagonist of SDF-1α ligand binding (IC50 = 12.5 ± 1.3 nM), inhibits SDF-1 mediated calcium flux (IC50 = 9.0 ± 2.0 nM) and SDF-1α mediated activation of the CXCR4 receptor as measured by a Eu-GTP binding assay (IC50 =39.8 ± 2.5 nM) or a [(35)S]-GTPγS binding assay (IC50 =19.0 ± 4.1 nM), and inhibits SDF-1α stimulated chemotaxis (IC50 =19.0 ± 4.0 nM). AMD11070 does not inhibit calcium flux of cells expressing CXCR3, CCR1, CCR2b, CCR4, CCR5 or CCR7, or ligand binding to CXCR7 and BLT1, demonstrating selectivity for CXCR4. In addition AMD11070 is able to inhibit the SDF-1β isoform interactions with CXCR4; and N-terminal truncated variants of CXCR4 with equal potency to wild type receptor. Further mechanistic studies indicate that AMD11070 is an allosteric inhibitor of CXCR4.
Methods of Molecular Biology | 2009
Jean Labrecque; Rebecca S.Y. Wong; Simon P. Fricker
Chemokines are a family of chemoattractant cytokines involved in leukocyte trafficking, activation, development, and hematopoeisis. Chemokines and their receptors have been implicated in several disease processes, particularly inflammatory and autoimmune disorders and cancer, and are therefore attractive targets for drug development. Chemokine receptors are members of the seven-transmembrane, G protein-coupled receptor (GPCR) family. As such they can be studied using GPCR assays such as ligand binding, G protein activation, and downstream signaling processes such as intracellular calcium flux. In this respect assessing GPCR activation by GTP binding is an important tool to study the early stage of signal transduction. Previously this has been done using the radiolabeled non-hydrolyzable GTP analogue [(35)S]GTPgammaS. In order to avoid the problems involved in working with radioactivity, a new non-radioactive version of the assay has been developed using a europium-labeled GTP analogue in which europium-GTP binding can be assayed using time-resolved fluorescence. We have adapted this assay for chemokine receptors. In this chapter, using the chemokine receptor CXCR4 as an example, we describe the steps for assay optimization. In addition we describe adaptation of this assay for the high-throughput screening of chemokine antagonists.
Bioorganic & Medicinal Chemistry Letters | 2011
Renato Skerlj; Gary J. Bridger; Yuanxi Zhou; Elyse Bourque; Ernest J. McEachern; Jonathan Langille; Curtis Harwig; Duane Veale; Wen Yang; Tongshong Li; Yongbao Zhu; Michael Bey; Ian R. Baird; Michael Sartori; Markus Metz; Renee Mosi; Kim L. Nelson; Veronique Bodart; Rebecca S.Y. Wong; Simon P. Fricker; Ron Mac Farland; Dana Huskens; Dominique Schols
A series of CCR5 antagonists were optimized for potent inhibition of R5 HIV-1 replication in peripheral blood mononuclear cells. Compounds that met acceptable ADME criteria, selectivity, human plasma protein binding, potency shift in the presence of α-glycoprotein were evaluated in rat and dog pharmacokinetics.
Journal of Medicinal Chemistry | 2013
Renato T. Skerlj; Gary J. Bridger; Yuanxi Zhou; Elyse Bourque; Ernest J. McEachern; Markus Metz; Curtis Harwig; Tong-Shuang Li; Wen Yang; David Bogucki; Yongbao Zhu; Jonathan Langille; Duane Veale; Tuya Ba; Michael Bey; Ian R. Baird; Alan Kaller; Maria Krumpak; David Leitch; Michael Satori; Krystyna Vocadlo; Danielle Guay; Susan Nan; Helen Yee; Jason Crawford; Gang Chen; Trevor Wilson; Bryon Carpenter; David Gauthier; Ron MacFarland
The redesign of the previously reported thiophene-3-yl-methyl urea series, as a result of potential cardiotoxicity, was successfully accomplished, resulting in the identification of a novel potent series of CCR5 antagonists containing the imidazolidinylpiperidinyl scaffold. The main redesign criteria were to reduce the number of rotatable bonds and to maintain an acceptable lipophilicity to mitigate hERG inhibition. The structure-activity relationship (SAR) that was developed was used to identify compounds with the best pharmacological profile to inhibit HIV-1. As a result, five advanced compounds, 6d, 6e, 6i, 6h, and 6k, were further evaluated for receptor selectivity, antiviral activity against CCR5 using (R5) HIV-1 clinical isolates, and in vitro and in vivo safety. On the basis of these results, 6d and 6h were selected for further development.
ACS Medicinal Chemistry Letters | 2012
Renato T. Skerlj; Gary J. Bridger; Yuanxi Zhou; Elyse Bourque; Ernest J. McEachern; Sanjay J. Danthi; Jonathan Langille; Curtis Harwig; Duane Veale; Bryon Carpenter; Tuya Ba; Michael Bey; Ian R. Baird; Trevor Wilson; Markus Metz; Ron MacFarland; Renee Mosi; Veronique Bodart; Rebecca S.Y. Wong; Simon P. Fricker; Dana Huskens; Dominique Schols
A series of CCR5 antagonists representing the thiophene-3-yl-methyl ureas were designed that met the pharmacological criteria for HIV-1 inhibition and mitigated a human ether-a-go-go related gene (hERG) inhibition liability. Reducing lipophilicity was the main design criteria used to identify compounds that did not inhibit the hERG channel, but subtle structural modifications were also important. Interestingly, within this series, compounds with low hERG inhibition prolonged the action potential duration (APD) in dog Purkinje fibers, suggesting a mixed effect on cardiac ion channels.
Biochemical Pharmacology | 2006
Simon P. Fricker; Virginia Anastassov; Jennifer Cox; Marilyn C. Darkes; Ognjen Grujic; Stefan R. Idzan; Jean Labrecque; Gloria Lau; Renee M. Mosi; Kim L. Nelson; Ling Qin; Zeffy Santucci; Rebecca S.Y. Wong