Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rebecka L. Brasso is active.

Publication


Featured researches published by Rebecka L. Brasso.


Science of The Total Environment | 2012

Penguin eggshell membranes reflect homogeneity of mercury in the marine food web surrounding the Antarctic Peninsula.

Rebecka L. Brasso; Michael J. Polito; Heather J. Lynch; Ron Naveen; Steven D. Emslie

Remote regions such as the Antarctic have become increasingly important for investigations into far-reaching anthropogenic impacts on the environment, most recently in regard to the global mercury cycle. Spatial patterns of mercury availability in four regions of the Antarctic Peninsula were investigated using three species of sympatrically breeding Pygoscelis penguins as biomonitors. Eggshells with intact membranes from Adélie, Gentoo, and Chinstrap penguins were collected at 24 breeding colonies in the South Orkney Islands, South Shetland Islands, eastern Antarctic Peninsula, and western Antarctic Peninsula during the 2006/2007 austral summer. In addition, we compared eggshell membrane mercury concentrations with eggshell stable isotope values (δ(15)N and δ(13)C) to determine if species-specific trophic or foraging habitat preferences influenced female mercury exposure prior to breeding. With few exceptions, mercury concentrations were found to be fairly homogeneous throughout the Antarctic Peninsula suggesting little spatial variation in the risk of exposure to dietary mercury in this food web. Mercury concentrations in Gentoo and Adélie penguins were similar while Chinstrap penguins tended to have higher eggshell membrane mercury concentrations than their congeners. However, inter and intra-specific differences in eggshell membrane mercury concentration were not related to eggshell δ(15)N or δ(13)C values, a likely result of all three species foraging at similar trophic positions. The lack of regional-scale differences in mercury availability in this marine ecosystem may be a reflection of generally uniform atmospheric deposition and upwelling of regionally homogeneous deep water rather than from geographically distinct point sources.


The Condor | 2008

OCCURRENCE AND IMPLICATIONS OF DOUBLE BROODING IN A SOUTHERN POPULATION OF TREE SWALLOWS

Adrian P. Monroe; Kelly K. Hallinger; Rebecka L. Brasso; Daniel A. Cristol

Abstract Double brooding is the initiation of a second clutch of eggs after successfully raising young from the first clutch. Migratory birds that nest in temperate North America are often single-brooded, but there is widespread intra- and interspecific variation. Tree Swallows (Tachycineta bicolor), which are becoming a model species in biology, are typically classified as a single-brooded species. We documented 18 cases of double brooding in a population of Tree Swallows recently established in the Shenandoah Valley, Virginia. Double brooding may be underreported in this species or may be increasing as a result of climate change or range expansion. If double brooding is as common elsewhere as it was in our study population, it could significantly alter estimates of seasonal or lifetime reproductive success in this widely studied bird.


Marine Pollution Bulletin | 2013

Trophic calculations reveal the mechanism of population-level variation in mercury concentrations between marine ecosystems: case studies of two polar seabirds.

Rebecka L. Brasso; Michael J. Polito

The incorporation of quantitative trophic level analysis in ecotoxicological studies provides explanatory power to identify the factors, trophic or environmental, driving population-level variation in mercury exposure at large geographic scales. In the Antarctic marine ecosystem, mercury concentrations and stable isotope values in Adélie penguins (Pygoscelis adeliae) were compared between the Antarctic Peninsula and the Ross Sea. Correcting tissue δ(15)N values for baseline δ(15)N values revealed population-level differences in trophic position which contributes to differences in mercury. Data from Thick-billed murres (Uria lomvia) were synthesized from published values from Baffin Bay and Svalbard to demonstrate the utility of baseline δ(15)N values in identifying differences in environmental mercury exposure independent of diet. Here, we demonstrate the importance of calculating population-specific trophic level data to uncover the source of variation in mercury concentrations between geographically distinct populations of marine predators.


Archives of Environmental Contamination and Toxicology | 2012

Pattern of mercury allocation into egg components is independent of dietary exposure in Gentoo penguins.

Rebecka L. Brasso; Stephanie Abel; Michael J. Polito

Avian eggs have become one of the most common means of evaluating mercury contamination in aquatic and marine environments and can serve as reliable indicators of dietary mercury exposure. We investigated patterns of mercury deposition into the major components of penguin eggs (shell, membrane, albumen, and yolk) using the Gentoo penguin (Pygoscelis papua) as a model species. Eggs were collected from both wild and captive populations of Gentoo penguins to compare the allocation of mercury into individual egg components of birds feeding at disparate trophic positions as inferred by stable isotope analysis. Mercury concentrations in captive penguins were an order of magnitude higher than in wild birds, presumably because the former were fed only fish at a higher trophic position relative to wild penguins that fed on a diet of 72–93% krill (Euphausia spp.). Similar to previous studies, we found the majority of total egg mercury sequestered in the albumen (92%) followed by the yolk (6.7%) with the lowest amounts in the shell (0.9%) and membrane (0.4%). Regardless of dietary exposure, mercury concentrations in yolk and membrane, and to a lesser degree shell, increased with increasing albumen mercury (used as a proxy for whole-egg mercury), indicating that any component, in the absence of others, may be suitable for monitoring changes in dietary mercury. Because accessibility of egg tissues in the wild varies, the establishment of consistent relationships among egg components will facilitate comparisons with any other study using eggs to assess dietary exposure to mercury.


Ecotoxicology | 2014

Multi-tissue analyses reveal limited inter-annual and seasonal variation in mercury exposure in an Antarctic penguin community

Rebecka L. Brasso; Michael J. Polito; Steven D. Emslie

Inter-annual variation in tissue mercury concentrations in birds can result from annual changes in the bioavailability of mercury or shifts in dietary composition and/or trophic level. We investigated potential annual variability in mercury dynamics in the Antarctic marine food web using Pygoscelis penguins as biomonitors. Eggshell membrane, chick down, and adult feathers were collected from three species of sympatrically breeding Pygoscelis penguins during the austral summers of 2006/2007–2010/2011. To evaluate the hypothesis that mercury concentrations in penguins exhibit significant inter-annual variation and to determine the potential source of such variation (dietary or environmental), we compared tissue mercury concentrations with trophic levels as indicated by δ15N values from all species and tissues. Overall, no inter-annual variation in mercury was observed in adult feathers suggesting that mercury exposure, on an annual scale, was consistent for Pygoscelis penguins. However, when examining tissues that reflected more discrete time periods (chick down and eggshell membrane) relative to adult feathers, we found some evidence of inter-annual variation in mercury exposure during penguins’ pre-breeding and chick rearing periods. Evidence of inter-annual variation in penguin trophic level was also limited suggesting that foraging ecology and environmental factors related to the bioavailability of mercury may provide more explanatory power for mercury exposure compared to trophic level alone. Even so, the variable strength of relationships observed between trophic level and tissue mercury concentrations across and within Pygoscelis penguin species suggest that caution is required when selecting appropriate species and tissue combinations for environmental biomonitoring studies in Antarctica.


Environmental Toxicology and Chemistry | 2013

Unique pattern of molt leads to low intraindividual variation in feather mercury concentrations in penguins

Rebecka L. Brasso; Bridgette E. Drummond; Stuart R. Borrett; André Chiaradia; Michael J. Polito; Andrea Nélida Raya Rey

The authors hypothesized that the catastrophic annual molt of penguins (Sphenisciformes) would lead to reduced intraindividual variation of mercury concentrations in body feathers. While mean mercury concentrations varied significantly among 8 penguin species, intraindividual variability did not differ among species and was 3 times lower than values observed in other seabirds. The findings of the present study suggest that a single body feather collected at random per individual can be adequate to estimate mercury exposure at the population level in penguins.


The Condor | 2006

TWO NEW LATE PLEISTOCENE AVIFAUNAS FROM NEW MEXICO

Rebecka L. Brasso; Steven D. Emslie

Abstract We report two new late Pleistocene avifaunas from New Mexico, recovered from Sandia Cave during archaeological excavations by F. Hibben in the 1930s and the nearby Marmot Cave excavated in 2000. The fossil assemblage from Sandia Cave consists of at least 30 taxa, including seven extralimital and two extinct species, Coragyps occidentalis (extinct vulture) and Ectopistes migratorius (Passenger Pigeon). The avifauna from Marmot Cave is limited to eight taxa shared with Sandia Cave. Two new records of Gymnogyps californianus (California Condor) are reported from these sites, as well as new records of Lagopus sp. (ptarmigan), Aegolius funereus (Boreal Owl), and Micrathene whitneyi (Elf Owl) from New Mexico. Two new radiocarbon dates on fossil G. californianus from Sandia and Marmot cave are reported at 10 795 ± 50 and 25 090 ± 220 14C years before present (B.P.), respectively. These collections provide further evidence for mixed avian communities in New Mexico during the late Pleistocene and are similar to other cave avifaunas of comparable age from the Great Basin and Rocky Mountain regions. The birds from Sandia Cave that are shared with other fossil avifaunas include species currently found in arctic tundra, boreal, and steppe habitats, as well as open, xeric communities. This collection provides additional evidence for widespread steppe-tundra, shrub, and subalpine forest environments at lower elevations of western North America during the late Pleistocene.


Scientific Reports | 2015

Chronic mercury exposure in Late Neolithic/Chalcolithic populations in Portugal from the cultural use of cinnabar

Steven D. Emslie; Rebecka L. Brasso; William P. Patterson; António Carlos Valera; Ashley McKenzie; Ana Maria Silva; James D. Gleason; Joel D. Blum

Cinnabar is a natural mercury sulfide (HgS) mineral of volcanic or hydrothermal origin that is found worldwide. It has been mined prehistorically and historically in China, Japan, Europe, and the Americas to extract metallic mercury (Hg0) for use in metallurgy, as a medicinal, a preservative, and as a red pigment for body paint and ceramics. Processing cinnabar via combustion releases Hg0 vapor that can be toxic if inhaled. Mercury from cinnabar can also be absorbed through the gut and skin, where it can accumulate in organs and bone. Here, we report moderate to high levels of total mercury (THg) in human bone from three Late Neolithic/Chalcolithic (5400–4100 B.P.) sites in southern Portugal that were likely caused by cultural use of cinnabar. We use light stable isotope and Hg stable isotope tracking to test three hypotheses on the origin of mercury in this prehistoric human bone. We traced Hg in two individuals to cinnabar deposits near Almadén, Spain, and conclude that use of this mineral likely caused mild to severe mercury poisoning in the prehistoric population. Our methods have applications to bioarchaeological investigations worldwide, and for tracking trade routes and mobility of prehistoric populations where cinnabar use is documented.


Environmental Pollution | 2016

Differing foraging strategies influence mercury (Hg) exposure in an Antarctic penguin community

Michael J. Polito; Rebecka L. Brasso; Wayne Z. Trivelpiece; Nina J. Karnovsky; William P. Patterson; Steven D. Emslie

Seabirds are ideal model organisms to track mercury (Hg) through marine food webs as they are long-lived, broadly distributed, and are susceptible to biomagnification due to foraging at relatively high trophic levels. However, using these species as biomonitors requires a solid understanding of the degree of species, sexual and age-specific variation in foraging behaviors which act to mediate their dietary exposure to Hg. We combined stomach content analysis along with Hg and stable isotope analyses of blood, feathers and common prey items to help explain inter and intra-specific patterns of dietary Hg exposure across three sympatric Pygoscelis penguin species commonly used as biomonitors of Hg availability in the Antarctic marine ecosystem. We found that penguin tissue Hg concentrations differed across species, between adults and juveniles, but not between sexes. While all three penguins species diets were dominated by Antarctic krill (Euphausia superba) and to a lesser extent fish, stable isotope based proxies of relative trophic level and krill consumption could not by itself sufficiently explain the observed patterns of inter and intra-specific variation in Hg. However, integrating isotopic approaches with stomach content analysis allowed us to identify the relatively higher risk of Hg exposure for penguins foraging on mesopelagic prey relative to congeners targeting epipelagic or benthic prey species. When possible, future seabird biomonitoring studies should seek to combine isotopic approaches with other, independent measures of foraging behavior to better account for the confounding effects of inter and intra-specific variation on dietary Hg exposure.


Quaternary International | 2014

Ornithogenic soils and the paleoecology of pygoscelid penguins in Antarctica

Steven D. Emslie; Michael J. Polito; Rebecka L. Brasso; William P. Patterson; Liguang Sun

Collaboration


Dive into the Rebecka L. Brasso's collaboration.

Top Co-Authors

Avatar

Michael J. Polito

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Steven D. Emslie

University of North Carolina at Wilmington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ashley McKenzie

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge