Rebekka Hueting
University of Oxford
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rebekka Hueting.
The Journal of Nuclear Medicine | 2014
Rebekka Hueting; Kersemans; Bart Cornelissen; Matthew Tredwell; Hussien K; Martin Christlieb; Antony D. Gee; Jan Passchier; Sean Smart; Dilworth; Gouverneur; Ruth J. Muschel
64Cu-diacetyl-bis(N4-methylthiosemicarbazonate), 64Cu-ATSM, continues to be investigated clinically as a PET agent both for delineation of tumor hypoxia and as an effective indicator of patient prognosis, but there are still aspects of the mechanism of action that are not fully understood. Methods: The retention of radioactivity in tumors after administration of 64Cu-ATSM in vivo is substantially higher for tumors with a significant hypoxic fraction. This hypoxia-dependent retention is believed to involve the reduction of Cu-ATSM, followed by the loss of copper to cellular copper processing. To shed light on a possible role of copper metabolism in hypoxia targeting, we have compared 64Cu retention in vitro and in vivo in CaNT and EMT6 cells or cancers after the administration of 64Cu-ATSM or 64Cu-acetate. Results: In vivo in mice bearing CaNT or EMT6 tumors, biodistributions and dynamic PET data are broadly similar for 64Cu-ATSM and 64Cu-acetate. Copper retention in tumors at 15 min is higher after injection of 64Cu-acetate than 64Cu-ATSM, but similar values result at 2 and 16 h for both. Colocalization with hypoxia as measured by EF5 immunohistochemistry is evident for both at 16 h after administration but not at 15 min or 2 h. Interestingly, at 2 h tumor retention for 64Cu-acetate and 64Cu-ATSM, although not colocalizing with hypoxia, is reduced by similar amounts by increased tumor oxygenation due to inhalation of increased O2. In vitro, substantially less uptake is observed for 64Cu-acetate, although this uptake had some hypoxia selectivity. Although 64Cu-ATSM is stable in mouse serum alone, there is rapid disappearance of intact complex from the blood in vivo and comparable amounts of serum bound activity for both 64Cu-ATSM and 64Cu-acetate. Conclusion: That in vivo, in the EMT6 and CaNT tumors studied, the distribution of radiocopper from 64Cu-ATSM in tumors essentially mirrors that of 64Cu-acetate suggests that copper metabolism may also play a role in the mechanism of selectivity of Cu-ATSM.
The Journal of Nuclear Medicine | 2008
Simon R. Bayly; Robert C. King; Davina J. Honess; Peter J. Barnard; Helen M. Betts; Jason P. Holland; Rebekka Hueting; Paul D. Bonnitcha; Jonathan R. Dilworth; Franklin I. Aigbirhio; Martin Christlieb
A water-soluble glucose conjugate of the hypoxia tracer 64Cu-diacetyl-bis(N4-methylthiosemicarbazone) (64Cu-ATSM) was synthesized and radiolabeled (64Cu-ATSE/A-G). Here we report our initial biological experiments with 64Cu-ATSE/A-G and compare the results with those obtained for 64Cu-ATSM and 18F-FDG. Methods: The uptake of 64Cu-ATSE/A-G and 64Cu-ATSM into HeLa cells in vitro was investigated at a range of dissolved oxygen concentrations representing normoxia, hypoxia, and anoxia. Small-animal PET with 64Cu-ATSE/A-G was performed in male BDIX rats implanted with P22 syngeneic carcinosarcomas. Images of 64Cu-ATSM and 18F-FDG were obtained in the same model for comparison. Results: 64CuATSE/A-G showed oxygen concentration–dependent uptake in vitro and, under anoxic conditions, showed slightly lower levels of cellular uptake than 64Cu-ATSM; uptake levels under hypoxic conditions were also lower. Whereas the normoxic uptake of 64Cu-ATSM increased linearly over time, 64Cu-ATSE/A-G uptake remained at low levels over the entire time course. In the PET study, 64CuATSE/A-G showed good tumor uptake and a biodistribution pattern substantially different from that of each of the controls. In marked contrast to the findings for 64Cu-ATSM, renal clearance and accumulation in the bladder were observed. 64Cu-ATSE/A-G did not display the characteristic brain and heart uptake of 18F-FDG. Conclusion: The in vitro cell uptake studies demonstrated that 64Cu-ATSE/A-G retained hypoxia selectivity and had improved characteristics when compared with 64Cu-ATSM. The in vivo PET results indicated a difference in the excretion pathways, with a shift from primarily hepatointestinal for 64Cu-ATSM to partially renal with 64Cu-ATSE/A-G. This finding is consistent with the hydrophilic nature of the glucose conjugate. A comparison with 18F-FDG PET results revealed that 64Cu-ATSE/A-G was not a surrogate for glucose metabolism. We have demonstrated that our method for the modification of Cu-bis(thiosemicarbazonato) complexes allows their biodistribution to be modified without negating their hypoxia selectivity or tumor uptake properties.
Dalton Transactions | 2010
Rebekka Hueting; Martin Christlieb; Jonathan R. Dilworth; Elisa García Garayoa; Véronique Gouverneur; Michael W. Jones; Veronique Maes; Roger Schibli; Xin Sun; Dirk Tourwé
A range of new carboxylate functionalised bis(thiosemicarbazone) ligands and their Cu(II) complexes have been prepared, fully characterised and radiolabeled in high yield with both (64)Cu and (99m)Tc. Conjugation to a bombesin derivative was achieved using standard solid phase synthetic methodologies and the (64)Cu-labeled conjugate was shown to have good tumour uptake in mice with xenografted PC-3 tumours.
PLOS ONE | 2011
Veerle Kersemans; Bart Cornelissen; Rebekka Hueting; Matthew Tredwell; Kamila Hussien; Philip D. Allen; Nadia Falzone; Sally A. Hill; Jonathan R. Dilworth; Véronique Gouverneur; Ruth J. Muschel; Sean Smart
Background Preclinical imaging requires anaesthesia to reduce motion-related artefacts. For direct translational relevance, anaesthesia must not significantly alter experimental outcome. This study reports on the effects of both anaesthetic and carrier gas upon the uptake of [64Cu]-CuATSM, [99mTc]-HL91 and [18F]-FMISO in a preclinical model of tumor hypoxia. Methodology/Principal Findings The effect of carrier gas and anaesthetic was studied in 6 groups of CaNT-bearing CBA mice using [64Cu]-CuATSM, [99mTc]-HL91 or [18F]-FMISO. Mice were anaesthetised with isoflurane in air, isoflurane in pure oxygen, with ketamine/xylazine or hypnorm/hypnovel whilst breathing air, or in the awake state whilst breathing air or pure oxygen. PET or SPECT imaging was performed after which the mice were killed for organ/tumor tracer quantitation. Tumor hypoxia was confirmed. Arterial blood gas analysis was performed for the different anaesthetic regimes. The results demonstrate marked influences on tumor uptake of both carrier gas and anaesthetic, and show differences between [99mTc]-HL91, [18F]-FMISO and [64Cu]-CuATSM. [99mTc]-HL91 tumor uptake was only altered significantly by administration of 100% oxygen. The latter was not the case for [18F]-FMISO and [64Cu]-CuATSM. Tumor-to-muscle ratio (TMR) for both compounds was reduced significantly when either oxygen or anaesthetics (isoflurane in air, ketamine/xylazine or hypnorm/hypnovel) were introduced. For [18F]-FMISO no further decrease was measured when both isoflurane and oxygen were administered, [64Cu]-CuATSM did show an additional significant decrease in TMR. When using the same anaesthetic regimes, the extent of TMR reduction was less pronounced for [64Cu]-CuATSM than for [18F]-FMISO (40–60% versus 70% reduction as compared to awake animals breathing air). Conclusions/Significance The use of anaesthesia can have profound effects on the experimental outcome. More importantly, all tested anaesthetics reduced tumor-hypoxia uptake. Anaesthesia cannot be avoided in preclinical studies but great care has to be taken in preclinical models of hypoxia as anaesthesia effects cannot be generalised across applications, nor disease states.
Journal of Labelled Compounds and Radiopharmaceuticals | 2014
Rebekka Hueting
The redox-active transition metal copper is an essential trace element for growth and development and serves as a structural or catalytic cofactor for many enzymes in a range of physiological processes. Mammalian copper homeostasis is tightly regulated, and an imbalance in copper metabolism is implicated in various pathological disorders. Radioactive copper isotopes, in particular (64) Cu (t1/2 = 12.7 h) and (67) Cu (t1/2 = 62.01 h), have made important contributions to the understanding of copper metabolism in health and disease. This review gives a brief account of how radiolabelled copper(II) salts and bioreductive copper complexes have been used to trace copper uptake, transport and efflux in vitro and in vivo. Recently, positron emission tomography (PET) has emerged as a noninvasive tool to image copper metabolism in living subjects and (64) Cu-PET is investigated for the study of copper-related neurological disorders, genetic diseases and cancer.
RSC Advances | 2014
Rebekka Hueting; Manuel Tropiano; Stephen Faulkner
Pyrene chromophores are shown to exhibit reversible energy transfer to europium ions, resulting in oxygen dependent lanthanide luminescence. Two different pathways can give rise to oxygen dependence: rapid reversible energy transfer between the T1 state and the emissive state, or slow T1–5D0 energy transfer on the timescale of triplet state quenching.
Chemical Communications | 2010
Laurence Carroll; Romain Bejot; Rebekka Hueting; Robert C. King; Paul D. Bonnitcha; Simon R. Bayly; Martin Christlieb; Jonathan R. Dilworth; Antony D. Gee; Jerome Declerck; Véronique Gouverneur
The synthesis of three pairs of orthogonally labelled fluorinated Cu bis(thiosemicarbazonato) complexes is presented. These are the first examples of (18)F-labelled Cu(II)-complexes designed to serve as new hypoxia selective PET tracers and as mechanistic probes to study the mode of action of this class of markers. In vitro evaluation revealed that the fluorinated Cu-complex derived from amide coupling is suitable for in vivo work.
Journal of Inorganic Biochemistry | 2013
Rebekka Hueting; Richard Tavaré; Jonathan R. Dilworth; Gregory Mullen
Dysregulation of apoptosis and necrosis is central to many diseases and non-invasive imaging of cell death is an important clinical objective to stage disease or to monitor treatment progress. The C2A domain of rat synaptotagmin I binds to phosphatidylserine (PS) exposed during cell death and modification to its lysine residues has been shown to disrupt PS binding. Site-specifically labelled (99m)Tc(CO)3-C2AcH and (68)Ga-C2Ac have previously been investigated for single photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging, respectively. We wished to design a (64)Cu-labelled counterpart due to the longer half-life of (64)Cu. Since the calcium binding sites in C2A may interfere with copper binding we sought a high affinity, fast labelling chelator. We synthesised a maleimide functionalised bis(thiosemicarbazone), H2ATSE/AMal, for the site-specific copper-64 radiolabelling of thiol-functionalised C2Ac. When radiolabelling was performed by incubation of the ligand-protein conjugate (post-labelling approach), analysis of the resultant (64)CuATSE/AMal-C2Ac revealed that the C2Ac was able to compete for radiocopper with the chelator. In contrast, the pre-labelled (64)CuATSE/AMal-C2Ac conjugate revealed good stability in serum and maintained target affinity in a red blood cell binding assay. The results suggest that due to the intrinsic copper binding properties of the protein, a pre-labelling approach is preferred for the C2Ac domain of synaptotagmin I when copper is the desired radioisotope.
Inorganica Chimica Acta | 2012
Jonathan R. Dilworth; Rebekka Hueting
European Journal of Inorganic Chemistry | 2008
Jason P. Holland; Peter J. Barnard; Simon R. Bayly; Helen M. Betts; Grant C. Churchill; Jonathan R. Dilworth; Ruth Edge; Jennifer C. Green; Rebekka Hueting