Reem Smoum
Hebrew University of Jerusalem
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Reem Smoum.
Carcinogenesis | 2010
Iain Brown; Maria Grazia Cascio; Klaus W.J. Wahle; Reem Smoum; Raphael Mechoulam; Ruth A. Ross; Roger G. Pertwee; Steven D. Heys
The omega-3 fatty acid ethanolamides, docosahexaenoyl ethanolamide (DHEA) and eicosapentaenoyl ethanolamide (EPEA), displayed greater anti-proliferative potency than their parent omega-3 fatty acids, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), in LNCaP and PC3 prostate cancer cells. DHEA and EPEA activated cannabinoid CB(1) and CB(2) receptors in vitro with significant potency, suggesting that they are endocannabinoids. Both LNCaP and PC3 cells expressed CB(1) and CB(2) receptors, and the CB(1)- and CB(2)-selective antagonists, AM281 and AM630, administered separately or together, reduced the anti-proliferative potencies of EPEA and EPA but not of DHEA or DHA in PC3 cells and of EPA but not of EPEA, DHEA or DHA in LNCaP cells. Even so, EPEA and EPA may not have inhibited PC3 or LNCaP cell proliferation via cannabinoid receptors since the anti-proliferative potency of EPEA was well below the potency it displayed as a CB(1) or CB(2) receptor agonist. Indeed, these receptors may mediate a protective effect because the anti-proliferative potency of DHEA in LNCaP and PC3 cells was increased by separate or combined administration of AM281 and AM630. The anandamide-metabolizing enzyme, fatty acid amide hydrolase (FAAH), was highly expressed in LNCaP but not PC3 cells. Evidence was obtained that FAAH metabolizes EPEA and DHEA and that the anti-proliferative potencies of these ethanolamides in LNCaP cells can be enhanced by inhibiting this enzyme. Our findings suggest that the expression of cannabinoid receptors and of FAAH in some tumour cells could well influence the effectiveness of DHA and EPA or their ethanolamide derivatives as anticancer agents.
Plant Science | 2002
Valery M. Dembitsky; Reem Smoum; Abed Al-Quntar; Hijazi Abu Ali; Inna Pergament; Morris Srebnik
Discovery of naturally-occurring boron compounds, all ionophoric polyketide macrodiolide antibiotics with a single boron atom critical for activity, established at least one biochemical role of boron. This review focuses primarily on presence and distribution of boron-containing compounds in vascular plants, marine algal species, and microorganisms.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Reem Smoum; Arik Bar; Bo Tan; Garry Milman; Malka Attar-Namdar; Orr Ofek; Jordyn Stuart; Alon Bajayo; Joseph Tam; Vardit Kram; David K. O'Dell; Michael J. Walker; Heather B. Bradshaw; Itai Bab; Raphael Mechoulam
Bone mass is determined by a continuous remodeling process, whereby the mineralized matrix is being removed by osteoclasts and subsequently replaced with newly formed bone tissue produced by osteoblasts. Here we report the presence of endogenous amides of long-chain fatty acids with amino acids or with ethanolamine (N-acyl amides) in mouse bone. Of these compounds, N-oleoyl-l-serine (OS) had the highest activity in an osteoblast proliferation assay. In these cells, OS triggers a Gi-protein-coupled receptor and Erk1/2. It also mitigates osteoclast number by promoting osteoclast apoptosis through the inhibition of Erk1/2 phosphorylation and receptor activator of nuclear-κB ligand (RANKL) expression in bone marrow stromal cells and osteoblasts. In intact mice, OS moderately increases bone volume density mainly by inhibiting bone resorption. However, in a mouse ovariectomy (OVX) model for osteoporosis, OS effectively rescues bone loss by increasing bone formation and markedly restraining bone resorption. The differential effect of exogenous OS in the OVX vs. intact animals is apparently a result of an OVX-induced decrease in skeletal OS levels. These data show that OS is a previously unexplored lipid regulator of bone remodeling. It represents a lead to antiosteoporotic drug discovery, advantageous to currently available therapies, which are essentially either proformative or antiresorptive.
British Journal of Pharmacology | 2011
Itai Bab; Reem Smoum; Heather B. Bradshaw; Raphael Mechoulam
There is increasing evidence demonstrating that fatty acid derivatives play a key regulatory role in a variety of tissues. However, the study of skeletal lipidomics is just emerging and global strategies, such as targeted lipidomics, have not been applied to bone tissue. Such strategies hold great promises as in the case of genomics and proteomics. A partial profile of endocannabinoids and endocannabinoid‐like compounds has demonstrated the presence of several long‐chain fatty acid amides (FAAs), some of which displaying potent effects on osteoblasts, the bone forming cells and osteoclasts, the bone resorbing cells. In the skeleton, the FAAs activate the CB1 cannabinoid receptor present in sympathetic nerve terminals as well as CB2 cannabinoid receptor, the Gi‐protein coupled receptor GPR55, and the transient receptor potential vanilloid type ion channel expressed by osteoblasts and/or osteoclasts. This review on the skeletal FAA system focuses on the production of FAAs in the skeleton and their net bone anabolic and anti‐catabolic activity resulting from the stimulation of bone formation and inhibition of bone resorption. As the FAA family holds great promise as a basis for the treatment of osteoporosis and other diseases involving bone, further studies should aim towards the complete profiling of these lipids and their receptors in bone tissue, followed by elucidation of their function and mechanism of action.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Reem Smoum; Saja Baraghithy; Mukesh Chourasia; Aviva Breuer; Naama Mussai; Malka Attar-Namdar; Natalya M. Kogan; Bitya Raphael; Daniele Bolognini; Maria Grazia Cascio; Pietro Marini; Roger G. Pertwee; Avital Shurki; Raphael Mechoulam; Itai Bab
Significance The significance of the results reported is in two areas. (i) Because the cannabinoid receptor type 2 (CB2) agonists seem to be general protective agents, HU-433, a new specific CB2 agonist, may be of major therapeutic importance. (ii) Enantiomers usually have different activity profiles. We report now that HU-433 and its enantiomer HU-308 are both specific CB2 agonists, but whereas HU-433 is much more potent than HU-308 in the rescue of ovariectomy-induced bone loss and ear inflammation, its binding to the CB2 receptor (through which the activity of both enantiomers takes place) is substantially lower compared with HU-308. This situation questions the usefulness of universal radioligands for comparative binding studies. Activation of the CB2 receptor is apparently an endogenous protective mechanism. Thus, it restrains inflammation and protects the skeleton against age-related bone loss. However, the endogenous cannabinoids, as well as Δ9-tetrahydrocannabinol, the main plant psychoactive constituent, activate both cannabinoid receptors, CB1 and CB2. HU-308 was among the first synthetic, selective CB2 agonists. HU-308 is antiosteoporotic and antiinflammatory. Here we show that the HU-308 enantiomer, designated HU-433, is 3–4 orders of magnitude more potent in osteoblast proliferation and osteoclast differentiation culture systems, as well as in mouse models, for the rescue of ovariectomy-induced bone loss and ear inflammation. HU-433 retains the HU-308 specificity for CB2, as shown by its failure to bind to the CB1 cannabinoid receptor, and has no activity in CB2-deficient cells and animals. Surprisingly, the CB2 binding affinity of HU-433 in terms of [3H]CP55,940 displacement and its effect on [35S]GTPγS accumulation is substantially lower compared with HU-308. A molecular-modeling analysis suggests that HU-433 and -308 have two different binding conformations within CB2, with one of them possibly responsible for the affinity difference, involving [35S]GTPγS and cAMP synthesis. Hence, different ligands may have different orientations relative to the same binding site. This situation questions the usefulness of universal radioligands for comparative binding studies. Moreover, orientation-targeted ligands have promising potential for the pharmacological activation of distinct processes.
Pure and Applied Chemistry | 2006
Adel Jabbour; Reem Smoum; Khuloud Takrouri; Eli Shalom; Batia Zaks; Doron Steinberg; Abraham Rubinstein; Israel Goldberg; Jehoshua Katzhendler; Morris Srebnik
Novel methods are described for the preparation of alkyldimethylamine cyanoboranes and β-hydroxylalkyldimethylamine cyanoboranes by C-lithiation of trimethylamine cyanoboranes followed by reaction with alkyl halides, aldehydes, and ketones. Lithiation of the monobromo derivatives of amine cyanoboranes led to the synthesis of the first examples of diborane derivatives of amine cyanoboranes. Bromo derivatives of amine cyanoboranes and amine carboxyboranes have been synthesized by new simple and efficient methods. Amine fluorocyanoboranes and amine fluorocarboxyboranes, new classes of compounds, have been prepared from the bromo precursors by fluorine/bromine exchange using fluorinating reagents such as AgF and Et3N.3HF. Eight different derivatives of oxazaborolidines were synthesized and evaluated for their affect on Streptococcus mutans viability, adhesion, and biofilm formation using 3[H]-thymidine labeled bacteria, and fluorescent stained bacteria. This is the first reported antibacterial activity of this class of compounds. The minimal inhibitory concentration (MIC) values ranged from 0.26 to 10 mM. Structure-activity relationship was observed. The B-butyl moiety of the oxazaborolidines contributed an anti-adhesion effect for all derivatives, while its effect diminished when the boron atom was incorporated in a fused heterocyclic ring. The B-phenyl group induced bacterial adhesion in all tested compounds. In a separate study for boronated saccahrides and enzymatic inhibition, the complex formation between N-butylboronic acid and a series of monosaccharides was investigated by 1H, 13C, and 11B NMR spectroscopy and gas chromatography-mass spectrometry (GC-MS). Then, a series of boronic acid compounds with protease inhibition properties were prepared. The effect of added mono-, di-, and polysaccharides on the inhibitory activity of these compounds was studied. Potassium organotrifluoroborates were found to be reversible competitive inhibitors of α-chymotrypsin and trypsin. Based on 19F NMR, it was speculated that they inactivate the enzymes as a result of the formation of hydrogen bonds between fluorine atoms of the inhibitors and the serine protease.
Journal of Organic Chemistry | 2009
Dorit Moradov; Al Quntar Aa; Youssef M; Reem Smoum; Abraham Rubinstein; Morris Srebnik
Cyclisation of diethyl 3-allyloxy-1-propynylphosphonates with Mo(CO)(6) under PK conditions to give 3-substituted-5-oxo-3,5,6,6a-tetrahydro-1H-cyclopenta[c]furan-4-ylphosphonate, 2a-h, in 45-88% isolated yields was done. The R groups are always syn with H(b) (where applicable). The stereochemistry was determined via both NMR and crystal X-ray analysis.
Organic and Biomolecular Chemistry | 2005
Reem Smoum; Abraham Rubinstein; Morris Srebnik
A series of potassium organotrifluoroborates were synthesized. Their stability to hydrolysis was determined in D2O, TRIS and phosphate buffer. It was found that in both D2O and TRIS buffers, these compounds are quite stable, whereas in phosphate buffer rapid hydrolysis occurs. Based on these results, a study was undertaken to determine whether potassium organotrifluoroborates can serve as protease inhibitors. It was found that potassium organotrifluoroborates increased inhibition by at least an order of magnitude over the corresponding boronates. Dixon plots showed that these compounds are reversible competitive inhibitors of alpha-chymotrypsin and trypsin. Based on 19F NMR, we speculate that they inactivate the enzymes as a result of the formation of hydrogen-bonds between fluorine atoms of the inhibitors and the serine protease.
Current Oncology | 2016
T. Fisher; H. Golan; G. Schiby; S. PriChen; Reem Smoum; I. Moshe; N. Peshes-Yaloz; A. Castiel; D. Waldman; R. Gallily; Raphael Mechoulam; A. Toren
BACKGROUND Neuroblastoma (nbl) is one of the most common solid cancers in children. Prognosis in advanced nbl is still poor despite aggressive multimodality therapy. Furthermore, survivors experience severe long-term multi-organ sequelae. Hence, the identification of new therapeutic strategies is of utmost importance. Cannabinoids and their derivatives have been used for years in folk medicine and later in the field of palliative care. Recently, they were found to show pharmacologic activity in cancer, including cytostatic, apoptotic, and antiangiogenic effects. METHODS We investigated, in vitro and in vivo, the anti-nbl effect of the most active compounds in Cannabis, Δ(9)-tetrahydrocannabinol (thc) and cannabidiol (cbd). We set out to experimentally determine the effects of those compounds on viability, invasiveness, cell cycle distribution, and programmed cell death in human nbl SK-N-SH cells. RESULTS Both compounds have antitumourigenic activity in vitro and impeded the growth of tumour xenografts in vivo. Of the two cannabinoids tested, cbd was the more active. Treatment with cbd reduced the viability and invasiveness of treated tumour cells in vitro and induced apoptosis (as demonstrated by morphology changes, sub-G1 cell accumulation, and annexin V assay). Moreover, cbd elicited an increase in activated caspase 3 in treated cells and tumour xenografts. CONCLUSIONS Our results demonstrate the antitumourigenic action of cbd on nbl cells. Because cbd is a nonpsychoactive cannabinoid that appears to be devoid of side effects, our results support its exploitation as an effective anticancer drug in the management of nbl.
The FASEB Journal | 2018
Valerio Chiurchiù; Alessandro Leuti; Reem Smoum; Raphael Mechoulam; Mauro Maccarrone
Autacoid local injury antagonist amides (ALIAmides) are a family of endogenous bioactive acyl ethanolamides that include the renowned palmitoyl ethanolamide (PEA), oleoyl ethanolamide (OEA), and stearoyl ethanolamide (SEA), and that are involved in several biologic processes such as nociception, lipid metabolism, and inflammation. The role of ALIAmides in the control of inflammatory processes has recently gained much attention and prompted the use of these molecules or their analogs, and the pharmacologic manipulation of their endogenous levels, as plausible therapeutic strategies in the treatment of several chronic inflammatory conditions. Since chronic inflammation is mainly driven by cells of adaptive immunity, particularly T lymphocytes, we aimed at investigating whether suchbioactive lipids could directly modulate T‐cell responses. We found that OEA, PEA, and eicosatrienoyl ethanolamide (ETEA) could directly inhibit both T‐cell responses by reducing their production of TNF‐α and IFN‐γ from CD8 T cells and TNF‐α, IFN‐γ and IL‐17 from CD4 T cells. Furthermore, neither SEA nor docosatrienoyl ethanolamide (DTEA) could affect cytokine production from both T cell subsets. Interestingly, unlike OEA and ETEA, PEA was also able to enhance de novo generation of forkhead box P3 (FoxP3)‐expressing regulatory T cells from CD4‐naive T cells. Our findings show for the first time that specific ALIAmides can directly affect different T‐cell subsets, and provide proof of their anti‐inflammatory role in chronic inflammation, ultimately suggesting that these bioactive lipids could offer novel tools for the management of T‐ cell dependent chronic inflammatory diseases.—Chiurchiù, V., Leuti, A., Smoum, R., Mechoulam, R., Maccarrone, M. Bioactive lipids ALIAmides differentially modulate inflammatory responses of distinct subsets of primary human T lymphocytes. FASEB J. 32, 5716–5723 (2018). www.fasebj.org