Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reg Watson is active.

Publication


Featured researches published by Reg Watson.


Science | 2008

A Global Map of Human Impact on Marine Ecosystems

Benjamin S. Halpern; Shaun Walbridge; Kimberly A. Selkoe; Carrie V. Kappel; Fiorenza Micheli; Caterina D'Agrosa; John F. Bruno; Kenneth S. Casey; Colin Ebert; Helen E. Fox; Rod Fujita; Dennis Heinemann; Hunter S. Lenihan; Elizabeth M. P. Madin; Matthew T. Perry; Elizabeth R. Selig; Mark Spalding; Robert S. Steneck; Reg Watson

The management and conservation of the worlds oceans require synthesis of spatial data on the distribution and intensity of human activities and the overlap of their impacts on marine ecosystems. We developed an ecosystem-specific, multiscale spatial model to synthesize 17 global data sets of anthropogenic drivers of ecological change for 20 marine ecosystems. Our analysis indicates that no area is unaffected by human influence and that a large fraction (41%) is strongly affected by multiple drivers. However, large areas of relatively little human impact remain, particularly near the poles. The analytical process and resulting maps provide flexible tools for regional and global efforts to allocate conservation resources; to implement ecosystem-based management; and to inform marine spatial planning, education, and basic research.


Science | 2010

Global Biodiversity: Indicators of Recent Declines

Stuart H. M. Butchart; Matt Walpole; Ben Collen; Arco J. van Strien; Jörn P. W. Scharlemann; Rosamunde E.A. Almond; Jonathan E. M. Baillie; Bastian Bomhard; Ciaire Brown; John F. Bruno; Kent E. Carpenter; Geneviève M. Carr; Janice Chanson; Anna M. Chenery; Jorge Csirke; Nicholas Davidson; Frank Dentener; Matt Foster; Alessandro Galli; James N. Galloway; Piero Genovesi; Richard D. Gregory; Marc Hockings; Valerie Kapos; Jean-Francois Lamarque; Fiona Leverington; J Loh; Melodie A. McGeoch; Louise McRae; Anahit Minasyan

Global Biodiversity Target Missed In 2002, the Convention on Biological Diversity (CBD) committed to a significant reduction in the rate of biodiversity loss by 2010. There has been widespread conjecture that this target has not been met. Butchart et al. (p. 1164, published online 29 April) analyzed over 30 indicators developed within the CBDs framework. These indicators include the condition or state of biodiversity (e.g., species numbers, population sizes), the pressures on biodiversity (e.g., deforestation), and the responses to maintain biodiversity (e.g., protected areas) and were assessed between about 1970 and 2005. Taken together, the results confirm that we have indeed failed to meet the 2010 targets. An analysis of 30 indicators shows that the Convention on Biological Diversity’s 2010 targets have not been met. In 2002, world leaders committed, through the Convention on Biological Diversity, to achieve a significant reduction in the rate of biodiversity loss by 2010. We compiled 31 indicators to report on progress toward this target. Most indicators of the state of biodiversity (covering species’ population trends, extinction risk, habitat extent and condition, and community composition) showed declines, with no significant recent reductions in rate, whereas indicators of pressures on biodiversity (including resource consumption, invasive alien species, nitrogen pollution, overexploitation, and climate change impacts) showed increases. Despite some local successes and increasing responses (including extent and biodiversity coverage of protected areas, sustainable forest management, policy responses to invasive alien species, and biodiversity-related aid), the rate of biodiversity loss does not appear to be slowing.


Science | 2009

Rebuilding Global Fisheries

Boris Worm; Ray Hilborn; Julia K. Baum; Trevor A. Branch; Jeremy S. Collie; Christopher Costello; Michael J. Fogarty; Elizabeth A. Fulton; Jeffrey A. Hutchings; Simon Jennings; Olaf P. Jensen; Heike K. Lotze; Pamela M. Mace; Tim R. McClanahan; Cóilín Minto; Stephen R. Palumbi; Ana M. Parma; Daniel Ricard; Andrew A. Rosenberg; Reg Watson; Dirk Zeller

Fighting for Fisheries In the debate concerning the future of the worlds fisheries, some have forecasted complete collapse but others have challenged this view. The protagonists in this debate have now joined forces to present a thorough quantitative review of current trends in world fisheries. Worm et al. (p. 578) evaluate the evidence for a global rebuilding of marine capture fisheries and their supporting ecosystems. Contrasting regions that have been managed for rebuilding with those that have not, reveals trajectories of decline and recovery from individual stocks to species, communities, and large marine ecosystems. The management solutions that have been most successful for rebuilding fisheries and ecosystems, include both large- and small-scale fisheries around the world. Catch restrictions, gear modification, and closed areas are helping to rebuild overexploited marine ecosystems. After a long history of overexploitation, increasing efforts to restore marine ecosystems and rebuild fisheries are under way. Here, we analyze current trends from a fisheries and conservation perspective. In 5 of 10 well-studied ecosystems, the average exploitation rate has recently declined and is now at or below the rate predicted to achieve maximum sustainable yield for seven systems. Yet 63% of assessed fish stocks worldwide still require rebuilding, and even lower exploitation rates are needed to reverse the collapse of vulnerable species. Combined fisheries and conservation objectives can be achieved by merging diverse management actions, including catch restrictions, gear modification, and closed areas, depending on local context. Impacts of international fleets and the lack of alternatives to fishing complicate prospects for rebuilding fisheries in many poorer regions, highlighting the need for a global perspective on rebuilding marine resources.


Nature | 2001

Systematic distortions in world fisheries catch trends

Reg Watson; Daniel Pauly

Over 75% of the world marine fisheries catch (over 80 million tonnes per year) is sold on international markets, in contrast to other food commodities (such as rice). At present, only one institution, the Food and Agriculture Organization of the United Nations (FAO) maintains global fisheries statistics. As an intergovernmental organization, however, FAO must generally rely on the statistics provided by member countries, even if it is doubtful that these correspond to reality. Here we show that misreporting by countries with large fisheries, combined with the large and widely fluctuating catch of species such as the Peruvian anchoveta, can cause globally spurious trends. Such trends influence unwise investment decisions by firms in the fishing sector and by banks, and prevent the effective management of international fisheries.


Philosophical Transactions of the Royal Society B | 2005

Global trends in world fisheries: impacts on marine ecosystems and food security.

Daniel Pauly; Reg Watson; Jackie Alder

This contribution, which reviews some broad trends in human history and in the history of fishing, argues that sustainability, however defined, rarely if ever occurred as a result of an explicit policy, but as result of our inability to access a major part of exploited stocks. With the development of industrial fishing, and the resulting invasion of the refuges previously provided by distance and depth, our interactions with fisheries resources have come to resemble the wars of extermination that newly arrived hunters conducted 40 000–50 000 years ago in Australia, and 11 000–13 000 years ago against large terrestrial mammals arrived in North America. These broad trends are documented here through a map of change in fish sizes, which displays characteristic declines, first in the nearshore waters of industrialized countries of the Northern Hemisphere, then spread offshore and to the Southern Hemisphere. This geographical extension met its natural limit in the late 1980s, when the catches from newly accessed stocks ceased to compensate for the collapse in areas accessed earlier, hence leading to a gradual decline of global landing. These trends affect developing countries more than the developed world, which have been able to meet the shortfall by increasing imports from developing countries. These trends, however, together with the rapid growth of farming of carnivorous fishes, which consumes other fishes suited for human consumption, have led to serious food security issues. This promotes urgency to the implementation of the remedies traditionally proposed to alleviate overfishing (reduction of overcapacity, enforcement of conservative total allowable catches, etc.), and to the implementation of non–conventional approaches, notably the re–establishment of the refuges (also known as marine reserves), which made possible the apparent sustainability of pre–industrial fisheries.


PLOS ONE | 2009

Estimating the Worldwide Extent of Illegal Fishing

David J. Agnew; John Pearce; Ganapathiraju Pramod; Tom Peatman; Reg Watson; John Beddington; Tony J. Pitcher

Illegal and unreported fishing contributes to overexploitation of fish stocks and is a hindrance to the recovery of fish populations and ecosystems. This study is the first to undertake a world-wide analysis of illegal and unreported fishing. Reviewing the situation in 54 countries and on the high seas, we estimate that lower and upper estimates of the total value of current illegal and unreported fishing losses worldwide are between


Nature | 2013

Signature of ocean warming in global fisheries catch

William W. L. Cheung; Reg Watson; Daniel Pauly

10 bn and


PLOS Biology | 2009

Management effectiveness of the world's marine fisheries.

Camilo Mora; Ransom A. Myers; Marta Coll; Simone Libralato; Tony J. Pitcher; U. Rashid Sumaila; Dirk Zeller; Reg Watson; Kevin J. Gaston; Boris Worm

23.5 bn annually, representing between 11 and 26 million tonnes. Our data are of sufficient resolution to detect regional differences in the level and trend of illegal fishing over the last 20 years, and we can report a significant correlation between governance and the level of illegal fishing. Developing countries are most at risk from illegal fishing, with total estimated catches in West Africa being 40% higher than reported catches. Such levels of exploitation severely hamper the sustainable management of marine ecosystems. Although there have been some successes in reducing the level of illegal fishing in some areas, these developments are relatively recent and follow growing international focus on the problem. This paper provides the baseline against which successful action to curb illegal fishing can be judged.


Nature | 2010

The trophic fingerprint of marine fisheries

Trevor A. Branch; Reg Watson; Elizabeth A. Fulton; Simon Jennings; Carey R. McGilliard; Grace T. Pablico; Daniel Ricard; Sean R. Tracey

Marine fishes and invertebrates respond to ocean warming through distribution shifts, generally to higher latitudes and deeper waters. Consequently, fisheries should be affected by ‘tropicalization’ of catch (increasing dominance of warm-water species). However, a signature of such climate-change effects on global fisheries catch has so far not been detected. Here we report such an index, the mean temperature of the catch (MTC), that is calculated from the average inferred temperature preference of exploited species weighted by their annual catch. Our results show that, after accounting for the effects of fishing and large-scale oceanographic variability, global MTC increased at a rate of 0.19 degrees Celsius per decade between 1970 and 2006, and non-tropical MTC increased at a rate of 0.23 degrees Celsius per decade. In tropical areas, MTC increased initially because of the reduction in the proportion of subtropical species catches, but subsequently stabilized as scope for further tropicalization of communities became limited. Changes in MTC in 52 large marine ecosystems, covering the majority of the world’s coastal and shelf areas, are significantly and positively related to regional changes in sea surface temperature. This study shows that ocean warming has already affected global fisheries in the past four decades, highlighting the immediate need to develop adaptation plans to minimize the effect of such warming on the economy and food security of coastal communities, particularly in tropical regions.


Philosophical Transactions of the Royal Society B | 2005

Background and interpretation of the 'Marine Trophic Index' as a measure of biodiversity.

Daniel Pauly; Reg Watson

A global analysis shows that fishery management worldwide is lagging far behind international standards, and that the conversion of scientific advice into policy, through a participatory and transparent process, holds promise for achieving sustainable fisheries.

Collaboration


Dive into the Reg Watson's collaboration.

Top Co-Authors

Avatar

Daniel Pauly

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Ussif Rashid Sumaila

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

William W. L. Cheung

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Dirk Zeller

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tony J. Pitcher

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Vicky W. Y. Lam

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Villy Christensen

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

U. Rashid Sumaila

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

C Gardner

University of Tasmania

View shared research outputs
Researchain Logo
Decentralizing Knowledge