Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Régen Drouin is active.

Publication


Featured researches published by Régen Drouin.


Clinical Genetics | 2008

Quantification of all fetal nucleated cells in maternal blood between the 18th and 22nd weeks of pregnancy using molecular cytogenetic techniques

Krabchi K; Gros-Louis F; Yan J; Marc Bronsard; Jacques Massé; Forest Jc; Régen Drouin

Different types of nucleated fetal cells (trophoblasts, erythroblasts, lymphocytes, and granulocytes) have been recovered in maternal peripheral blood. In spite of many attempts to estimate the number of fetal cells in maternal circulation, there is still much controversy concerning this aspect. The numbers obtained vary widely, ranging from 1 nucleated cell per 104 to 1 per 109 nucleated maternal cells. The purpose of our project was to determine the absolute number of all different types of male fetal nucleated cells per unit volume of peripheral maternal blood. Peripheral blood samples were obtained from 12 normal pregnant women known to carry a male fetus between 18 and 22 weeks of pregnancy. Three milliliters (3 ml) of maternal blood has been processed without any enrichment procedures. Fluorescence in situ hybridization (FISH) and primed in situ labeling (PRINS) were performed, and fetal XY cells were identified (among maternal XX cells) and scored by fluorescent microscopy screening. The total number of male fetal nucleated cells per milliliter of maternal blood was consistent in each woman studied and varied from 2 to 6 cells per milliliter within the group of normal pregnancies. The number of fetal cells in maternal blood, at a given period, is reproducible and can therefore be assessed by cytogenetic methods. This confirms the possibility of developing a non‐invasive prenatal diagnosis test for aneuploidies. Furthermore, we demonstrate that it is possible to repeatedly identify an extremely small number of fetal cells among millions of maternal cells.


Photochemistry and Photobiology | 1997

UVB-INDUCED CYCLOBUTANE PYRIMIDINE DIMER FREQUENCY CORRELATES WITH SKIN CANCER MUTATIONAL HOTSPOTS IN P53

Régen Drouin; Jean-Philippe Therrien

Abstract— Ultraviolet light has been identified as the major carcinogen in skin cancer and the p53 tumor suppressor gene is a major target for UV‐induced mutations. The mutations are probably caused by unrepaired UV‐induced cyclobutane pyrimidine dimers (CPD) and possibly by the less frequent pyrimidine (6‐4) pyrimidone photoproducts. While hot spots for p53 mutations in human nonmela‐noma skin tumors correspond quite well to slow spots for CPD repair in cultured cells irradiated with the model mutagen 254 nm UVC (which is not present in terrestrial sunlight), they do not all coincide with sequences that are initially frequently damaged by 254 nm UVC. Using LMPCR (ligation‐mediated polymerase chain reaction), we show that environmentally relevant UVB light induces CPD at CC and PyrmC positions much more frequently than does UVC light, and that all eight skin cancer hot spots in p53 are also hot spots for UVB‐induced CPD. Our results show that methylation of dipyrimidine sites (PyrmCpG) is associated with an increase rate of CPD formation upon UVB irradiation. Consequently, DNA methylation may increase the mutagenic potential of UVB and explains that several p53 mutation hot spots are found at PyrmCpG. The distribution patterns of CPD formation and the photofootprint patterns found along exons 5 and 6 of p53 gene are suggestive of DNA folding into nucleosomes.


PLOS Genetics | 2008

Disruption of AP1S1, Causing a Novel Neurocutaneous Syndrome, Perturbs Development of the Skin and Spinal Cord

Alexandre Montpetit; Stéphanie Côté; Edna Brustein; Christian A. Drouin; Line Lapointe; Michèle Boudreau; Caroline Meloche; Régen Drouin; Thomas J. Hudson; Pierre Drapeau; Patrick Cossette

Adaptor protein (AP) complexes regulate clathrin-coated vesicle assembly, protein cargo sorting, and vesicular trafficking between organelles in eukaryotic cells. Because disruption of the various subunits of the AP complexes is embryonic lethal in the majority of cases, characterization of their function in vivo is still lacking. Here, we describe the first mutation in the human AP1S1 gene, encoding the small subunit σ1A of the AP-1 complex. This founder splice mutation, which leads to a premature stop codon, was found in four families with a unique syndrome characterized by mental retardation, enteropathy, deafness, peripheral neuropathy, ichthyosis, and keratodermia (MEDNIK). To validate the pathogenic effect of the mutation, we knocked down Ap1s1 expression in zebrafish using selective antisens morpholino oligonucleotides (AMO). The knockdown phenotype consisted of perturbation in skin formation, reduced pigmentation, and severe motility deficits due to impaired neural network development. Both neural and skin defects were rescued by co-injection of AMO with wild-type (WT) human AP1S1 mRNA, but not by co-injecting the truncated form of AP1S1, consistent with a loss-of-function effect of this mutation. Together, these results confirm AP1S1 as the gene responsible for MEDNIK syndrome and demonstrate a critical role of AP1S1 in development of the skin and spinal cord.


American Journal of Pathology | 2003

Genetic cooperation between the Werner syndrome protein and poly(ADP-ribose) polymerase-1 in preventing chromatid breaks, complex chromosomal rearrangements, and cancer in mice

Michel Lebel; Josée N. Lavoie; Isabelle Gaudreault; Marc Bronsard; Régen Drouin

Werner syndrome is a rare disorder characterized by the premature onset of a number of age-related diseases. The gene responsible for Werner syndrome encodes a DNA helicase/exonuclease protein. Participation in a replication complex is among the several functions postulated for the WRN protein. The poly(ADP-ribose) polymerase-1 (PARP-1) enzyme, which is known to bind to DNA strand breaks, is also associated with the DNA replication complex. To determine whether Wrn and PARP-1 enzymes act in concert during cell growth, mice with a mutation in the helicase domain of the Wrn gene (Wrn(Deltahel/Deltahel) mice) were crossed to PARP-1-null mice. Both Wrn(Deltahel/Deltahel) and PARP-1-null/Wrn(Deltahel/Deltahel) cohorts developed more neoplasms than wild-type animals. The tumor spectrum was the same between PARP-1-null/Wrn(Deltahel/Deltahel) mice and Wrn mutants. However, PARP-1-null/Wrn(Deltahel/Deltahel) mice developed neoplasms at a younger age. Mouse embryonic fibroblasts derived from such PARP-1-null/Wrn(Deltahel/Deltahel) mice stop dividing abruptly unlike Wrn(Deltahel/Deltahel) or PARP-1-null cells. PARP-1-null/Wrn(Deltahel/Deltahel) fibroblasts were distinguished by an increased frequency of chromatid breaks, complex chromosomal rearrangements, and fragmentation. Finally, experiments have indicated that the PARP-1 enzyme co-immunoprecipitates with the WRN protein in human 293 embryonic kidney cells. These results suggest that Wrn and PARP-1 enzymes may be part of a complex involved in the processing of DNA breaks.


Human Mutation | 2012

Update of PAX2 mutations in renal coloboma syndrome and establishment of a locus-specific database

Matthew Bower; Rémi Salomon; Judith Allanson; Corinne Antignac; Francesco Benedicenti; Elisa Benetti; Gil Binenbaum; Uffe Birk Jensen; Pierre Cochat; Stéphane Decramer; Joanne Dixon; Régen Drouin; Marni J. Falk; Holly Feret; Robert Gise; Alasdair G. W. Hunter; Kisha Johnson; Rajiv Kumar; Marie Pierre Lavocat; Laura S. Martin; Vincent Morinière; David Mowat; Luisa Murer; Hiep T. Nguyen; Gabriela Peretz-Amit; Eric A. Pierce; Emily Place; Nancy Rodig; Ann Salerno; Sujatha Sastry

Renal coloboma syndrome, also known as papillorenal syndrome is an autosomal‐dominant disorder characterized by ocular and renal malformations. Mutations in the paired‐box gene, PAX2, have been identified in approximately half of individuals with classic findings of renal hypoplasia/dysplasia and abnormalities of the optic nerve. Prior to 2011, there was no actively maintained locus‐specific database (LSDB) cataloguing the extent of genetic variation in the PAX2 gene and phenotypic variation in individuals with renal coloboma syndrome. Review of published cases and the collective diagnostic experience of three laboratories in the United States, France, and New Zealand identified 55 unique mutations in 173 individuals from 86 families. The three clinical laboratories participating in this collaboration contributed 28 novel variations in 68 individuals in 33 families, which represent a 50% increase in the number of variations, patients, and families published in the medical literature. An LSDB was created using the Leiden Open Variation Database platform: www.lovd.nl/PAX2. The most common findings reported in this series were abnormal renal structure or function (92% of individuals), ophthalmological abnormalities (77% of individuals), and hearing loss (7% of individuals). Additional clinical findings and genetic counseling implications are discussed. Hum Mutat 33:457–466, 2012.


Mutation Research-reviews in Mutation Research | 2009

P53 transcriptional activities: a general overview and some thoughts.

Jean-François Millau; Nathalie Bastien; Régen Drouin

P53 is a master transcriptional regulator controlling several main cellular pathways. Its role is to adapt gene expression programs in order to maintain cellular homeostasis and genome integrity in response to stresses. P53 is found mutated in about half of human cancers and most mutations are clustered within the DNA-binding domain of the protein resulting in altered p53 transcriptional activity. This illustrates the importance of the gene regulations achieved by p53. The aim of this review is to provide a global overview of the current understanding of p53 transcriptional activities and to discuss some ongoing questions and unresolved points about p53 transcriptional activity.


Advances in human genetics | 1994

High-resolution replication bands compared with morphologic G- and R-bands.

Régen Drouin; Gerald P. Holmquist; Claude-Lise Richer

Replication banding using 5-bromo-2’-deoxyuridine (BrdUrd) has traditionally yielded band patterns with extensive cell-to-cell variation, including variation between homologous chromosomes in the same cell. With the discovery that cycling cells can be blocked at the R/G transition (the time at which R-band synthesis is complete and G-band synthesis has yet to begin), either R-bands or G-bands can be selectively substituted with BrdUrd. This new method (named in this review as the “Thymidine-BrdUrd permutation culture method”) coupled with an improved fluorochrome-photolysis-Giemsa (FPG) staining method that reveals only unsubstituted chromatin, provides proparations with replication band patterns as reproducible and with the same resolution as patterns from standard trypsin-Giemsa banding. In this chapter, we will review the basic cell physiology of how R/G transition blocking and replication banding work and compare replication band patterns with classical band patterns.


Trends in Molecular Medicine | 2009

Fetal–maternal exchange of multipotent stem/progenitor cells: microchimerism in diagnosis and disease

Thomas Klonisch; Régen Drouin

The biological concept of microchimerism, the bidirectional trafficking and stable long-term persistence of small numbers of allogeneic (fetal and maternal) cells in a genetically different organ, has gained considerable attention. Microchimerism is a common phenomenon in many species, including humans, and microchimeric cells can modify immunological recognition or tolerance, affect the course and outcome of various diseases and demonstrate stem cell-like or regenerative potential. Here, we review current knowledge of the biology of microchimerism and show how long-term allogeneic co-existence within an organism can impact on existing paradigms in chronic disease, cancer biology, regenerative medicine and fetal-maternal immunology. We discuss diagnostic challenges, clinical applications and future research directions in this exciting and rapidly emerging field of allogeneic fetal-maternal cell exchange.


Journal of Inherited Metabolic Disease | 2007

Quebec neonatal mass urinary screening programme: From micromolecules to macromolecules

Christiane Auray-Blais; Denis Cyr; Régen Drouin

SummaryThe Quebec Mass Urinary Screening Programme, initiated in 1971, has resulted in the screening of more than 2 500 000 newborns in the province of Quebec for 25 inherited Mendelian disorders divided into two groups. The first group concerns urea cycle disorders (citrullinaemia, hyperargininaemia, argininosuccinic aciduria), ketotic hyperglycinaemia, and organic acidurias (methylmalonic aciduria, glutaric aciduria type I, etc.); the second group relates to disorders of amino acid metabolism (cystathioninuria, prolidase deficiency, etc.) and transport (Fanconi syndrome, cystinurias, Hartnup syndrome, etc.). The main goal of the Programme is to detect and prevent these genetic diseases, some detectable only in urine, before the onset of clinical symptoms. A multiplex thin-layer chromatography methodology was developed, in which metabolites in urine are resolved and visualized by the sequential application of four different reagents to detect aminoacidopathies and organic acidurias. The technique is simple, reproducible, inexpensive and rapid, allowing the analysis of 500 samples daily by a single technician. The voluntary compliance of the parents is excellent, averaging 90% per year. Over the years, we have established a dynamic process, developing techniques or new reagents to detect as many treatable disorders as possible, now evaluating macromolecules associated with lysosomal storage disorders, mainly globotriaosylceramide (Gb3) for Fabry disease. We present here the methodology, infrastructure in place, results and recent statistics of the well-established Quebec Mass Urinary Screening Programme. We also report a study by tandem mass spectrometric analysis of urinary Gb3 in Fabry disease for the follow-up and monitoring of Fabry patients, as well as for its possible application to mass and high-risk screening programmes.


Proceedings of the National Academy of Sciences of the United States of America | 2003

UV wavelength-dependent regulation of transcription-coupled nucleotide excision repair in p53-deficient human cells

Géraldine Mathonnet; Caroline Léger; Julie Desnoyers; Régen Drouin; Jean-Philippe Therrien; Elliot A. Drobetsky

Nucleotide excision repair (NER) prevents skin cancer by eliminating highly genotoxic cyclobutane pyrimidine dimers (CPDs) induced in DNA by the UVB component of sunlight. NER consists of two distinct but overlapping subpathways, i.e., global NER, which removes CPD from the genome overall, and transcription-coupled NER (TCNER), which removes CPD uniquely from the transcribed strand of active genes. Previous investigations have clearly established that the p53 tumor suppressor plays a crucial role in the NER process. Here we used the ligation-mediated PCR technique to demonstrate, at nucleotide resolution along two chromosomal genes in human cells, that the requirement for functional p53 in TCNER, but not in global NER, depends on incident UV wavelength. Indeed, relative to an isogenic p53 wild-type counterpart, p53-deficient human lymphoblastoid strains were shown to remove CPD significantly less efficiently along both the transcribed and nontranscribed strands of the c-jun and hprt loci after exposure to polychromatic UVB (290–320 nm). However, in contrast, after irradiation with 254-nm UV, p53 deficiency engendered less efficient CPD repair only along the nontranscribed strands of these target genes. The revelation of this intriguing wavelength-dependent phenomenon reconciles an apparent conflict between previous studies which used either UVB or 254-nm UV to claim, respectively, that p53 is required for, or plays no role whatsoever in, TCNER of CPD. Furthermore, our finding highlights a major caveat in experimental photobiology by providing a prominent example where the extensively used “nonsolar” model mutagen 254-nm UV does not accurately replicate the effects of environmentally relevant UVB.

Collaboration


Dive into the Régen Drouin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ju Yan

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar

Macoura Gadji

Cheikh Anta Diop University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kada Krabchi

Université de Sherbrooke

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge