Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Regie Lyn P. Santos-Cortez is active.

Publication


Featured researches published by Regie Lyn P. Santos-Cortez.


Nature Genetics | 2012

TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome

Catherine Boileau; Dong Chuan Guo; Nadine Hanna; Ellen S. Regalado; Delphine Detaint; Limin Gong; Mathilde Varret; Siddharth K. Prakash; Alexander H. Li; Hyacintha D'Indy; Alan C. Braverman; Bernard Grandchamp; Callie S. Kwartler; Laurent Gouya; Regie Lyn P. Santos-Cortez; Marianne Abifadel; Suzanne M. Leal; Christine Muti; Jay Shendure; Marie Sylvie Gross; Mark J. Rieder; Alec Vahanian; Deborah A. Nickerson; Jean Michel; Guillaume Jondeau; Dianna M. Milewicz

A predisposition for thoracic aortic aneurysms leading to acute aortic dissections can be inherited in families in an autosomal dominant manner. Genome-wide linkage analysis of two large unrelated families with thoracic aortic disease followed by whole-exome sequencing of affected relatives identified causative mutations in TGFB2. These mutations—a frameshift mutation in exon 6 and a nonsense mutation in exon 4—segregated with disease with a combined logarithm of odds (LOD) score of 7.7. Sanger sequencing of 276 probands from families with inherited thoracic aortic disease identified 2 additional TGFB2 mutations. TGFB2 encodes transforming growth factor (TGF)-β2, and the mutations are predicted to cause haploinsufficiency for TGFB2; however, aortic tissue from cases paradoxically shows increased TGF-β2 expression and immunostaining. Thus, haploinsufficiency for TGFB2 predisposes to thoracic aortic disease, suggesting that the initial pathway driving disease is decreased cellular TGF-β2 levels leading to a secondary increase in TGF-β2 production in the diseased aorta.


Circulation Research | 2011

Exome Sequencing Identifies SMAD3 Mutations as a Cause of Familial Thoracic Aortic Aneurysm and Dissection With Intracranial and Other Arterial Aneurysms

Ellen S. Regalado; Dong Chuan Guo; Carlos Villamizar; Nili Avidan; Dawna Gilchrist; Barbara McGillivray; Lorne A. Clarke; Francois P. Bernier; Regie Lyn P. Santos-Cortez; Suzanne M. Leal; Aida M. Bertoli-Avella; Jay Shendure; Mark J. Rieder; Deborah A. Nickerson; Dianna M. Milewicz

Rationale: Thoracic aortic aneurysms leading to acute aortic dissections (TAAD) can be inherited in families in an autosomal dominant manner. As part of the spectrum of clinical heterogeneity of familial TAAD, we recently described families with multiple members that had TAAD and intracranial aneurysms or TAAD and intracranial and abdominal aortic aneurysms inherited in an autosomal dominant manner. Objective: To identify the causative mutation in a large family with autosomal dominant inheritance of TAAD with intracranial and abdominal aortic aneurysms by performing exome sequencing of 2 distantly related individuals with TAAD and identifying shared rare variants. Methods and Results: A novel frame shift mutation, p. N218fs (c.652delA), was identified in the SMAD3 gene and segregated with the vascular diseases in this family with a logarithm of odds score of 2.52. Sequencing of 181 probands with familial TAAD identified 3 additional SMAD3 mutations in 4 families, p.R279K (c.836G>A), p.E239K (c.715G>A), and p.A112V (c.235C>T), resulting in a combined logarithm of odds score of 5.21. These 4 mutations were notably absent in 2300 control exomes. SMAD3 mutations were recently described in patients with aneurysms osteoarthritis syndrome and some of the features of this syndrome were identified in individuals in our cohort, but these features were notably absent in many SMAD3 mutation carriers. Conclusions: SMAD3 mutations are responsible for 2% of familial TAAD. Mutations are found in families with TAAD alone, along with families with TAAD, intracranial aneurysms, abdominal aortic and bilateral iliac aneurysms segregating in an autosomal dominant manner.


American Journal of Human Genetics | 2013

Recurrent Gain-of-Function Mutation in PRKG1 Causes Thoracic Aortic Aneurysms and Acute Aortic Dissections

Dong Chuan Guo; Ellen S. Regalado; Darren E. Casteel; Regie Lyn P. Santos-Cortez; Limin Gong; Jeong Joo Kim; Sarah Dyack; S. Gabrielle Horne; Guijuan Chang; Guillaume Jondeau; Catherine Boileau; Joseph S. Coselli; Zhenyu Li; Suzanne M. Leal; Jay Shendure; Mark J. Rieder; Michael J. Bamshad; Deborah A. Nickerson; Choel Kim; Dianna M. Milewicz

Gene mutations that lead to decreased contraction of vascular smooth-muscle cells (SMCs) can cause inherited thoracic aortic aneurysms and dissections. Exome sequencing of distant relatives affected by thoracic aortic disease and subsequent Sanger sequencing of additional probands with familial thoracic aortic disease identified the same rare variant, PRKG1 c.530G>A (p.Arg177Gln), in four families. This mutation segregated with aortic disease in these families with a combined two-point LOD score of 7.88. The majority of affected individuals presented with acute aortic dissections (63%) at relatively young ages (mean 31 years, range 17-51 years). PRKG1 encodes type I cGMP-dependent protein kinase (PKG-1), which is activated upon binding of cGMP and controls SMC relaxation. Although the p.Arg177Gln alteration disrupts binding to the high-affinity cGMP binding site within the regulatory domain, the altered PKG-1 is constitutively active even in the absence of cGMP. The increased PKG-1 activity leads to decreased phosphorylation of the myosin regulatory light chain in fibroblasts and is predicted to cause decreased contraction of vascular SMCs. Thus, identification of a gain-of-function mutation in PRKG1 as a cause of thoracic aortic disease provides further evidence that proper SMC contractile function is critical for maintaining the integrity of the thoracic aorta throughout a lifetime.


Stroke | 2014

RNF213 Rare Variants in an Ethnically Diverse Population With Moyamoya Disease

Alana C. Cecchi; Dong Chuan Guo; Zhao Ren; Kelly Flynn; Regie Lyn P. Santos-Cortez; Suzanne M. Leal; Gao T. Wang; Ellen S. Regalado; Gary K. Steinberg; Jay Shendure; Michael J. Bamshad; James C. Grotta; Deborah A. Nickerson; Hariyadarshi Pannu; Dianna M. Milewicz

Background and Purpose— Moyamoya disease (MMD) is a rare, genetically heterogeneous cerebrovascular disease resulting from occlusion of the distal internal carotid arteries. A variant in the Ring Finger 213 gene (RNF213), altering arginine at position 4810 (p.R4810K), is associated with MMD in Asian populations. However, there are a lack of data on the role of RNF213 in patients with MMD of additional ethnicities and diasporic Asian populations. We investigate the contribution of RNF213 alterations to MMD in an ethnically diverse population based in the United States. Methods— We initially sequenced RNF213 exons 43, 44, and 45 (encoding the eponymous RING finger domain) and exon 60 (encoding p.R4810K) in 86 ethnically diverse patients with MMD. Comprehensive exome sequencing data from 24 additional patients with MMD was then analyzed to identify RNF213 variants globally. Segregation of variants with MMD and other vascular diseases was assessed in families. Results— RNF213 p.R4810K was identified in 56% (9/16) of patients with MMD of Asian descent and not in 94 patients of non-Asian descent. 3.6% (4/110) of patients had variants in the exons encoding the RING finger domain. Seven additional variants were identified in 29% (7/24) of patients with MMD who underwent exome sequencing. Segregation analysis supported an association with MMD for 2 variants and a lack of association with disease for 1 variant. Conclusions— These results confirm that alterations in RNF213 predispose patients of diverse ethnicities to MMD, and that the p.R4810K variant predisposes individuals of Asian descent in the United States to MMD.


Nature Genetics | 2015

COPA mutations impair ER-Golgi transport and cause hereditary autoimmune-mediated lung disease and arthritis

Levi B. Watkin; Birthe Jessen; Wojciech Wiszniewski; Timothy J. Vece; Max Jan; Youbao Sha; Maike Thamsen; Regie Lyn P. Santos-Cortez; Kwanghyuk Lee; Tomasz Gambin; Lisa R. Forbes; Christopher S. Law; Asbjørg Stray-Pedersen; Mickie H. Cheng; Emily M. Mace; Mark S. Anderson; Dongfang Liu; Ling Fung Tang; Sarah K. Nicholas; Karen Nahmod; George Makedonas; Debra L. Canter; Pui-Yan Kwok; John Hicks; Kirk D. Jones; Samantha Penney; Shalini N. Jhangiani; Michael D. Rosenblum; Sharon D. Dell; Michael Waterfield

Unbiased genetic studies have uncovered surprising molecular mechanisms in human cellular immunity and autoimmunity. We performed whole-exome sequencing and targeted sequencing in five families with an apparent mendelian syndrome of autoimmunity characterized by high-titer autoantibodies, inflammatory arthritis and interstitial lung disease. We identified four unique deleterious variants in the COPA gene (encoding coatomer subunit α) affecting the same functional domain. Hypothesizing that mutant COPA leads to defective intracellular transport via coat protein complex I (COPI), we show that COPA variants impair binding to proteins targeted for retrograde Golgi-to-ER transport. Additionally, expression of mutant COPA results in ER stress and the upregulation of cytokines priming for a T helper type 17 (TH17) response. Patient-derived CD4+ T cells also demonstrate significant skewing toward a TH17 phenotype that is implicated in autoimmunity. Our findings uncover an unexpected molecular link between a vesicular transport protein and a syndrome of autoimmunity manifested by lung and joint disease.


American Journal of Human Genetics | 2015

MAT2A Mutations Predispose Individuals to Thoracic Aortic Aneurysms

Dong Chuan Guo; Limin Gong; Ellen S. Regalado; Regie Lyn P. Santos-Cortez; Ren Zhao; Bo Cai; Sudha Veeraraghavan; Siddharth K. Prakash; Ralph J. Johnson; Ann Muilenburg; Marcia C. Willing; Guillaume Jondeau; Catherine Boileau; Hariyadarshi Pannu; Rocio Moran; Julie Debacker; Michael J. Bamshad; Jay Shendure; Deborah A. Nickerson; Suzanne M. Leal; C.S. Raman; Eric C. Swindell; Dianna M. Milewicz

Up to 20% of individuals who have thoracic aortic aneurysms or acute aortic dissections but who do not have syndromic features have a family history of thoracic aortic disease. Significant genetic heterogeneity is established for this familial condition. Whole-genome linkage analysis and exome sequencing of distant relatives from a large family with autosomal-dominant inheritance of thoracic aortic aneurysms variably associated with the bicuspid aortic valve was used for identification of additional genes predisposing individuals to this condition. A rare variant, c.1031A>C (p.Glu344Ala), was identified in MAT2A, which encodes methionine adenosyltransferase II alpha (MAT IIα). This variant segregated with disease in the family, and Sanger sequencing of DNA from affected probands from unrelated families with thoracic aortic disease identified another MAT2A rare variant, c.1067G>A (p.Arg356His). Evidence that these variants predispose individuals to thoracic aortic aneurysms and dissections includes the following: there is a paucity of rare variants in MAT2A in the population; amino acids Glu344 and Arg356 are conserved from humans to zebrafish; and substitutions of these amino acids in MAT Iα are found in individuals with hypermethioninemia. Structural analysis suggested that p.Glu344Ala and p.Arg356His disrupt MAT IIα enzyme function. Knockdown of mat2aa in zebrafish via morpholino oligomers disrupted cardiovascular development. Co-transfected wild-type human MAT2A mRNA rescued defects of zebrafish cardiovascular development at significantly higher levels than mRNA edited to express either the Glu344 or Arg356 mutants, providing further evidence that the p.Glu344Ala and p.Arg356His substitutions impair MAT IIα function. The data presented here support the conclusion that rare genetic variants in MAT2A predispose individuals to thoracic aortic disease.


Circulation Research | 2016

LOX Mutations Predispose to Thoracic Aortic Aneurysms and Dissections

Dong Chuan Guo; Ellen S. Regalado; Limin Gong; Xueyan Duan; Regie Lyn P. Santos-Cortez; Pauline Arnaud; Zhao Ren; Bo Cai; Ellen M. Hostetler; Rocio Moran; David Liang; Anthony L. Estrera; Hazim J. Safi; Suzanne M. Leal; Michael J. Bamshad; Jay Shendure; Deborah A. Nickerson; Guillaume Jondeau; Catherine Boileau; Dianna M. Milewicz

RATIONALE Mutations in several genes have been identified that are responsible for 25% of families with familial thoracic aortic aneurysms and dissections. However, the causative gene remains unknown in 75% of families. OBJECTIVES To identify the causative mutation in families with autosomal dominant inheritance of thoracic aortic aneurysms and dissections. METHODS AND RESULTS Exome sequencing was used to identify the mutation responsible for a large family with thoracic aortic aneurysms and dissections. A heterozygous rare variant, c.839G>T (p.Ser280Arg), was identified in LOX, encoding a lysyl oxidase, that segregated with disease in the family. Sanger and exome sequencing was used to investigate mutations in LOX in an additional 410 probands from unrelated families. Additional LOX rare variants that segregated with disease in families were identified, including c.125G>A (p.Trp42*), c.604G>T (p.Gly202*), c.743C>T (p.Thr248Ile), c.800A>C (p.Gln267Pro), and c.1044T>A (p.Ser348Arg). The altered amino acids cause haploinsufficiency for LOX or are located at a highly conserved LOX catalytic domain, which is relatively invariant in the population. Expression of the LOX variants p.Ser280Arg and p.Ser348Arg resulted in significantly lower lysyl oxidase activity when compared with the wild-type protein. Individuals with LOX variants had fusiform enlargement of the root and ascending thoracic aorta, leading to ascending aortic dissections. CONCLUSIONS These data, along with previous studies showing that the deficiency of LOX in mice or inhibition of lysyl oxidases in turkeys and rats causes aortic dissections, support the conclusion that rare genetic variants in LOX predispose to thoracic aortic disease.


American Journal of Human Genetics | 2014

Mutations in TBC1D24, a gene associated with epilepsy, also cause nonsyndromic deafness DFNB86.

Atteeq U. Rehman; Regie Lyn P. Santos-Cortez; Robert J. Morell; Meghan C. Drummond; Taku Ito; Kwanghyuk Lee; Asma A. Khan; Muhammad Asim R. Basra; Naveed Wasif; Muhammad Ayub; Syed Irfan Raza; Deborah A. Nickerson; Jay Shendure; Michael J. Bamshad; Saima Riazuddin; Neil Billington; Shaheen N. Khan; Penelope L. Friedman; Andrew J. Griffith; Wasim Ahmad; Sheikh Riazuddin; Suzanne M. Leal; Thomas B. Friedman

Inherited deafness is clinically and genetically heterogeneous. We recently mapped DFNB86, a locus associated with nonsyndromic deafness, to chromosome 16p. In this study, whole-exome sequencing was performed with genomic DNA from affected individuals from three large consanguineous families in which markers linked to DFNB86 segregate with profound deafness. Analyses of these data revealed homozygous mutation c.208G>T (p.Asp70Tyr) or c.878G>C (p.Arg293Pro) in TBC1D24 as the underlying cause of deafness in the three families. Sanger sequence analysis of TBC1D24 in an additional large family in which deafness segregates with DFNB86 identified the c.208G>T (p.Asp70Tyr) substitution. These mutations affect TBC1D24 amino acid residues that are conserved in orthologs ranging from fruit fly to human. Neither variant was observed in databases of single-nucleotide variants or in 634 chromosomes from ethnically matched control subjects. TBC1D24 in the mouse inner ear was immunolocalized predominantly to spiral ganglion neurons, indicating that DFNB86 deafness might be an auditory neuropathy spectrum disorder. Previously, six recessive mutations in TBC1D24 were reported to cause seizures (hearing loss was not reported) ranging in severity from epilepsy with otherwise normal development to epileptic encephalopathy resulting in childhood death. Two of our four families in which deafness segregates with mutant alleles of TBC1D24 were available for neurological examination. Cosegregation of epilepsy and deafness was not observed in these two families. Although the causal relationship between genotype and phenotype is not presently understood, our findings, combined with published data, indicate that recessive alleles of TBC1D24 can cause either epilepsy or nonsyndromic deafness.


American Journal of Human Genetics | 2014

Rare-Variant Extensions of the Transmission Disequilibrium Test: Application to Autism Exome Sequence Data

Zongxiao He; Brian J. O’Roak; Joshua D. Smith; Gao Wang; Stanley Hooker; Regie Lyn P. Santos-Cortez; Biao Li; Mengyuan Kan; Nik Krumm; Deborah A. Nickerson; Jay Shendure; Evan E. Eichler; Suzanne M. Leal

Many population-based rare-variant (RV) association tests, which aggregate variants across a region, have been developed to analyze sequence data. A drawback of analyzing population-based data is that it is difficult to adequately control for population substructure and admixture, and spurious associations can occur. For RVs, this problem can be substantial, because the spectrum of rare variation can differ greatly between populations. A solution is to analyze parent-child trio data, by using the transmission disequilibrium test (TDT), which is robust to population substructure and admixture. We extended the TDT to test for RV associations using four commonly used methods. We demonstrate that for all RV-TDT methods, using proper analysis strategies, type I error is well-controlled even when there are high levels of population substructure or admixture. For trio data, unlike for population-based data, RV allele-counting association methods will lead to inflated type I errors. However type I errors can be properly controlled by obtaining p values empirically through haplotype permutation. The power of the RV-TDT methods was evaluated and compared to the analysis of case-control data with a number of genetic and disease models. The RV-TDT was also used to analyze exome data from 199 Simons Simplex Collection autism trios and an association was observed with variants in ABCA7. Given the problem of adequately controlling for population substructure and admixture in RV association studies and the growing number of sequence-based trio studies, the RV-TDT is extremely beneficial to elucidate the involvement of RVs in the etiology of complex traits.


Journal of Clinical Investigation | 2016

FOXE3 mutations predispose to thoracic aortic aneurysms and dissections.

Shao Qing Kuang; Olga Medina-Martinez; Dong Chuan Guo; Limin Gong; Ellen S. Regalado; Corey Reynolds; Catherine Boileau; Guillaume Jondeau; Siddharth K. Prakash; Callie S. Kwartler; Lawrence Yang Zhu; Andrew M. Peters; Xue Yan Duan; Michael J. Bamshad; Jay Shendure; Debbie A. Nickerson; Regie Lyn P. Santos-Cortez; Xiurong Dong; Suzanne M. Leal; Mark W. Majesky; Eric C. Swindell; Milan Jamrich; Dianna M. Milewicz

The ascending thoracic aorta is designed to withstand biomechanical forces from pulsatile blood. Thoracic aortic aneurysms and acute aortic dissections (TAADs) occur as a result of genetically triggered defects in aortic structure and a dysfunctional response to these forces. Here, we describe mutations in the forkhead transcription factor FOXE3 that predispose mutation-bearing individuals to TAAD. We performed exome sequencing of a large family with multiple members with TAADs and identified a rare variant in FOXE3 with an altered amino acid in the DNA-binding domain (p.Asp153His) that segregated with disease in this family. Additional pathogenic FOXE3 variants were identified in unrelated TAAD families. In mice, Foxe3 deficiency reduced smooth muscle cell (SMC) density and impaired SMC differentiation in the ascending aorta. Foxe3 expression was induced in aortic SMCs after transverse aortic constriction, and Foxe3 deficiency increased SMC apoptosis and ascending aortic rupture with increased aortic pressure. These phenotypes were rescued by inhibiting p53 activity, either by administration of a p53 inhibitor (pifithrin-α), or by crossing Foxe3-/- mice with p53-/- mice. Our data demonstrate that FOXE3 mutations lead to a reduced number of aortic SMCs during development and increased SMC apoptosis in the ascending aorta in response to increased biomechanical forces, thus defining an additional molecular pathway that leads to familial thoracic aortic disease.

Collaboration


Dive into the Regie Lyn P. Santos-Cortez's collaboration.

Top Co-Authors

Avatar

Suzanne M. Leal

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kwanghyuk Lee

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Wasim Ahmad

Quaid-i-Azam University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jay Shendure

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Muhammad Ansar

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dianna M. Milewicz

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Ellen S. Regalado

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge