Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Regina C. B. Q. Figueiredo is active.

Publication


Featured researches published by Regina C. B. Q. Figueiredo.


Parasitology International | 2011

In vitro antileishmanial activity and cytotoxicity of essential oil from Lippia sidoides Cham.

Maria das Graças Freire de Medeiros; Aline Caroline da Silva; Antônia Maria das Graças Lopes Citó; Andrezza Raposo Borges; Sidney Gonçalo de Lima; José Arimatéia Dantas Lopes; Regina C. B. Q. Figueiredo

Leishmaniasis is a widespread tropical infection caused by different species of Leishmania protozoa. There is no vaccine available for Leishmania infections and conventional treatments are very toxic to the patients. Therefore, antileishmanial drugs are urgently needed. In this study we have analyzed the effects of essential oils from Lippia sidoides (LSEO) and its major compound thymol on the growth, viability and ultrastructure of Leishmania amazonensis. The essential oil and thymol showed significant activity against promastigote forms of L. amazonensis, with IC(50)/48 h of 44.38 and 19.47 μg/mL respectively. However, thymol showed toxicity against peritoneal macrophages and low selectivity against the promastigotes when compared with the crude LSEO. On the other hand, no cytotoxic effect was observed in macrophages treated with the crude essential oil. Incubation of L. amazonensis-infected macrophages with LSEO showed a marked reduction in amastigote survival within the macrophages. Significant morphological alterations as accumulation of large lipid droplets in the cytoplasm, disrupted membrane and wrinkled cells were usually seen in treated parasites. The LSEOs activity against both promastigote and the amstigote forms of L. amazonensis, together with its low toxicity to mammalian cells, point to LSEO as a promising agent for the treatment of cutaneous leishmaniasis.


Journal of Parasitology | 2000

DIFFERENTIATION OF TRYPANOSOMA CRUZI EPIMASTIGOTES: METACYCLOGENESIS AND ADHESION TO SUBSTRATE ARE TRIGGERED BY NUTRITIONAL STRESS

Regina C. B. Q. Figueiredo; Daniela S. Rosa; Maurilio J. Soares

Differentiation of Trypanosoma cruzi epimastigotes to metacyclic trypomastigotes occurs in the insect rectum, after adhesion of the epimastigotes to the intestinal wall. We investigated the effect of the nutritional stress on the metacyclogenesis process in vitro by incubating epimastigotes in the chemically defined TAU3AAG medium supplemented with different nutrients. Addition of fetal bovine serum induced epimastigote growth but inhibited metacyclogenesis. In this medium, few parasites attached to the substrate. Ultrastructural analysis demonstrated reservosomes at the posterior end of the epimastigotes. Incubation of the cells in TAU3AAG medium containing gold-labeled transferrin resulted in high endocytosis of the marker by both adhered and free-swimming epimastigotes. No intracellular gold particles could be detected in trypomastigotes. Addition of transferrin–gold complexes to adhered epimastigotes cultivated for 4 days in TAU3AAG medium resulted in decrease of both metacyclogenesis and adhesion to the substrate, as compared with parasites maintained in transferrin-free medium. Adhesion to the substrate is triggered by nutritional stress, and proteins accumulated in reservosomes are used as energy source during the differentiation. A close relationship exists among nutritional stress, endocytosis of nutrients, adhesion to the substrate, and cell differentiation in T. cruzi epimastigotes.


Experimental Parasitology | 2012

Trypanocidal and cytotoxic activities of essential oils from medicinal plants of Northeast of Brazil

Andrezza Raposo Borges; Juliana Ramos de Albuquerque Aires; Taciana Mirely Maciel Higino; Maria das Graças Freire de Medeiros; Antônia Maria das Graças Lopes Citó; José Arimatéia Dantas Lopes; Regina C. B. Q. Figueiredo

Chagas disease, caused by Trypanosoma cruzi, is an important cause of mortality and morbidity in Latin America. There are no vaccines available, the chemotherapy used to treat this illness has serious side effects and its efficacy on the chronic phase of disease is still a matter of debate. In a search for alternative treatment for Chagas disease, essential oils extracted from traditional medicinal plants Lippia sidoides, Lippia origanoides, Chenopodium ambrosioides, Ocimum gratissimum, Justicia pectorales and Vitex agnus-castus were investigated in vitro for trypanocidal and cytotoxic activities. Essential Oils were extracted by hydrodistillation and submitted to chemical analysis by gas chromatography/mass spectrometry. The concentration of essential oils necessary to inhibit 50% of the epimastigotes or amastigotes growth (IC(50)) and to kill 50% of trypomastigote forms (LC(50)) was estimated. The most prevalent chemical constituents of these essential oils were monoterpenes and sesquiterpenes. All essential oils tested demonstrated an inhibitory effect on the parasite growth and survival. L. sidoides and L. origanoides essential oils were the most effective against trypomastigote and amastigote forms respectively. No significant cytotoxic effects were observed in mouse peritoneal macrophages incubated with essential oils which were more selective against the parasites than mammalian cells. Taken together, our results point towards the use of these essential oils as potential chemotherapeutic agent against T. cruzi.


Molecular and Biochemical Parasitology | 2011

The four trypanosomatid eIF4E homologues fall into two separate groups, with distinct features in primary sequence and biological properties

Eden R. Freire; Rafael Dhalia; Danielle M. N. Moura; Tamara D. da Costa Lima; Rodrigo P. Lima; Christian R. S. Reis; Katie Hughes; Regina C. B. Q. Figueiredo; Nancy Standart; Mark Carrington; Osvaldo P. de Melo Neto

Translation initiation in eukaryotes requires eIF4E, the cap binding protein, which mediates its function through an interaction with the scaffolding protein eIF4G, as part of the eIF4F complex. In trypanosomatids, four eIF4E homologues have been described but the specific function of each is not well characterized. Here, we report a study of these proteins in Trypanosoma brucei (TbEIF4E1 through 4). At the sequence level, they can be assigned to two groups: TbEIF4E1 and 2, similar in size to metazoan eIF4E1; and TbEIF4E3 and 4, with long N-terminal extensions. All are constitutively expressed, but whilst TbEIF4E1 and 2 localize to both the nucleus and cytoplasm, TbEIF4E3 and 4 are strictly cytoplasmic and are also more abundant. After knockdown through RNAi, TbEIF4E3 was the only homologue confirmed to be essential for viability of the insect procyclic form. In contrast, TbEIF4E1, 3 and 4 were all essential for the mammalian bloodstream form. Simultaneous RNAi knockdown of TbEIF4E1 and 2 caused cessation of growth and death in procyclics, but with a delayed impact on translation, whilst knockdown of TbEIF4E3 alone or a combined TbEIF4E1 and 4 knockdown led to substantial translation inhibition which preceded cellular death by several days, at least. Only TbEIF4E3 and 4 were found to interact with T. brucei eIF4G homologues; TbEIF4E3 bound both TbEIF4G3 and 4 whilst TbEIF4E4 bound only to TbEIF4G3. These results are consistent with TbEIF4E3 and 4 having distinct but relevant roles in initiation of protein synthesis.


Parasitology Research | 2000

Low temperature blocks fluid-phase pinocytosis and receptor-mediated endocytosis in Trypanosoma cruzi epimastigotes

Regina C. B. Q. Figueiredo; Maurilio J. Soares

Abstract Gold-labeled albumin and transferrin were used to follow at the ultrastructural level the early events and the effect of low temperature on protein uptake by Trypanosoma cruzi epimastigotes. In parasites incubated for 5 min at 28 °C with protein-gold complexes, extracellular markers were found only at the cytostome and/or the flagellar pocket regions, whereas intracellular gold particles were detected inside small uncoated vesicles located nearby. Within 10 min, labeling was also observed in uncoated vesicles close to the nucleus. Only after 30 min could the tracers be detected in the reservosomes. Weak labeling in the cytostome and flagellar pocket of parasites incubated at 4 °C with the albumin-gold solution indicated that albumin uptake occurred by fluid-phase pinocytosis. On the other hand, intense labeling at the cytostome was observed in parasites incubated at 4 °C with gold-labeled transferrin, showing that receptor-mediated endocytosis occurs mainly at this site. Both proteins were absent from the cells at 4 °C and 12 °C. Raising the temperature from 12 °C to 28 °C led to transferrin labeling in intracellular vesicles dispersed throughout the cytoplasm, but not in reservosomes. Our results suggest that low temperatures affect the transport and pinching of endocytic vesicles as well as the rate of delivery of transferrin to reservosomes.


Eukaryotic Cell | 2010

Functional characterization of three Leishmania poly(A) binding protein homologues with distinct binding properties to RNA and protein partners.

Tamara D. da Costa Lima; Danielle M. N. Moura; Christian R. S. Reis; J. Ronnie C. Vasconcelos; Louise Ellis; Mark Carrington; Regina C. B. Q. Figueiredo; Osvaldo P. de Melo Neto

ABSTRACT Trypanosomatid protozoans are reliant on posttranscriptional processes to control gene expression. Regulation occurs at the levels of mRNA processing, stability, and translation, events that may require the participation of the poly(A) binding protein (PABP). Here, we have undertaken a functional study of the three distinct Leishmania major PABP (LmPABP) homologues: the previously described LmPABP1; LmPABP2, orthologous to the PABP described from Trypanosoma species; and LmPABP3, unique to Leishmania. Sequence identity between the three PABPs is no greater than 40%. In assays measuring binding to A-rich sequences, LmPABP1 binding was poly(A) sensitive but heparin insensitive; LmPABP2 binding was heparin sensitive and less sensitive to poly(A), compatible with unique substitutions observed in residues implicated in poly(A) binding; and LmPABP3 displayed intermediate properties. All three homologues are simultaneously expressed as abundant cytoplasmic proteins in L. major promastigotes, but only LmPABP1 is present as multiple isoforms. Upon transcription inhibition, LmPABP2 and -3 migrated to the nucleus, while LmPABP1 remained predominantly cytoplasmic. Immunoprecipitation assays showed an association between LmPABP2 and -3. Although the three proteins bound to a Leishmania homologue of the translation initiation factor eukaryotic initiation factor 4G (eIF4G) (LmEIF4G3) in vitro, LmPABP1 was the only one to copurify with native LmEIF4G3 from cytoplasmic extracts. Functionality was tested using RNA interference (RNAi) in Trypanosoma brucei, where both orthologues to LmPABP1 and -2 are required for cellular viability. Our results indicate that these homologues have evolved divergent functions, some of which may be unique to the trypanosomatids, and reinforces a role for LmPABP1 in translation through its interaction with the eIF4G homologue.


Experimental Parasitology | 2011

Morphological and physiological changes in Leishmania promastigotes induced by yangambin, a lignan obtained from Ocotea duckei

Rubens L. Monte Neto; Louisa M.A. Sousa; Celidarque da Silva Dias; José Maria Barbosa Filho; Márcia Rosa de Oliveira; Regina C. B. Q. Figueiredo

We have previously demonstrated that yangambin, a lignan obtained from Ocotea duckei Vattimo (Lauraceae), shows antileishmanial activity against promastigote forms of Leishmania chagasi and Leishmania amazonensis. The aim of this study was to determine the in vitro effects of yangambin against these parasites using electron and confocal microscopy. L. chagasi and L. amazonensis promastigotes were incubated respectively with 50 μg/mL and 65 μg/mL of pure yangambin and stained with acridine orange. Treated-parasites showed significant alterations in fluorescence emission pattern and cell morphology when compared with control cells, including the appearance of abnormal round-shaped cells, loss of cell motility, nuclear pyknosis, cytoplasm acidification and increased number of acidic vesicular organelles (AVOs), suggesting important physiological changes. Ultrastructural analysis of treated-promatigotes showed characteristics of cell death by apoptosis as well as by autophagy. The presence of parasites exhibiting multiples nuclei suggests that yangambin may also affect the microtubule dynamic in both Leishmania species. Taken together our results show that yangambin is a promising agent against Leishmania.


International Journal of Food Microbiology | 2012

Carvacrol and 1,8-cineole alone or in combination at sublethal concentrations induce changes in the cell morphology and membrane permeability of Pseudomonas fluorescens in a vegetable-based broth

Jossana Pereira de Sousa; Rayanne de Araújo Torres; Geíza Alves de Azerêdo; Regina C. B. Q. Figueiredo; Margarida Angélica da Silva Vasconcelos; Evandro Leite de Souza

This study aimed to investigate the effects of sublethal concentrations of carvacrol (CAR) and 1,8-cineole (CIN) alone and in combination on the morphology, cell viability and membrane permeability of Pseudomonas fluorescens ATCC 11253 cultivated in a vegetable-based broth. Transmission and scanning electron microscopy images of bacterial cells exposed to CAR and CIN alone or in combination showed marked ultrastructural changes after 1h of exposure. These changes included shrunken protoplasm, discontinuity of the outer and cytoplasmic membranes and leakage of the intracellular material. Confocal scanning laser microscopy images corroborated the electron microscopy data, showing a decrease in the number of SYTO-9 cells (intact cells) with a concomitant increase in the number of PI-positive cells (dead cells). All of these morphological changes are indicative of increased membrane permeability and the loss of bacterial envelope integrity, which ultimately lead to cell death. The combination of sublethal concentrations of CAR and CIN could be applied to inhibit the growth of P. fluorescens on vegetables.


Bioorganic Chemistry | 2010

3-Hydroxy-2-methylene-3-(4-nitrophenylpropanenitrile): A new highly active compound against epimastigote and trypomastigote form of Trypanosoma cruzi

Jana M. Sandes; Andrezza Raposo Borges; Cláudio G.L. Junior; Fábio P.L. Silva; Gabriel A.U. Carvalho; Gerd B. Rocha; Mário L. A. A. Vasconcellos; Regina C. B. Q. Figueiredo

We have synthesized the Morita-Baylis-Hillman adduct (MBHA) 3-hydroxy-2-methylene-3-(4-nitrophenyl)-propanenitrile (3) in quantitative yield and evaluated on Trypanosoma cruzi epimastigote and bloodstream trypomastigote forms. Compound 3 strongly inhibited epimastigote growth, with IC(50)/72hof 28.5 microM and also caused intense trypomastigotes lysis, with an IC(50)/24h of 25.5 microM. Ultrastructural analysis showed significant morphological changes on both parasite forms treated with 3, including increase of cell volume and rounding of cell body as well as intense intracellular disorganization. Morphological changes indicative of apoptosis, autophagy or necrosis were observed in most affected cells. Docking calculations of 1, 2 and 3 pointed out the possibility of T. cruzi Farnesyl Pyrophosphate Synthase (TcFPPS) enzyme inhibition in 3 mechanism of action.


Parasitology | 2004

Reservosome: an endocytic compartment in epimastigote forms of the protozoan Trypanosoma cruzi (Kinetoplastida: Trypanosomatidae). Correlation between endocytosis of nutrients and cell differentiation

Regina C. B. Q. Figueiredo; D. S. Rosa; Yara de Miranda Gomes; M. Nakasawa; Maurilio J. Soares

Reservosomes are large membrane-bound organelles found at the posterior end of epimastigote forms of Trypanosoma cruzi, but absent in amastigotes and trypomastigotes. We have transferred bloodstream trypomastigotes to LIT medium supplemented with gold-labelled transferrin in order to analyse, at the ultrastructural level, the occurrence of reservosomes and endocytosis during the trypomastigote to epimastigote differentiation. After 24 h, the trypomastigotes differentiated into amastigotes, which adhered to each other forming large clusters. Electron-dense vesicles were detected close to the Golgi complex in cells with intermediary characteristics between amastigotes and epimastigotes, but typical reservosomes at the posterior cell tip were still absent. Transferrin-gold complexes were observed only bound to the surface of clustered cells. After 72 h, epimastigotes were observed being released from the clusters and free-swimming epimastigotes appeared, containing electron-dense vesicles at their posterior region. Typical reservosomes, labelled with transferrin-gold, were observed only in free-swimming epimastigotes. When fully differentiated epimastigotes were incubated with transferrin-gold complexes and then processed for the immunocytochemical detection of cysteine proteinase, all reservosomes were positive for the enzyme, but co-localization of both markers did not occur in all organelles. Our data demonstrate that in T. cruzi epimastigotes endocytosis is strongly related to reservosome biogenesis during the trypomastigote to epimastigote differentiation process.

Collaboration


Dive into the Regina C. B. Q. Figueiredo's collaboration.

Top Co-Authors

Avatar

Beate S. Santos

Federal University of Pernambuco

View shared research outputs
Top Co-Authors

Avatar

Evandro Leite de Souza

Federal University of Paraíba

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adriana Fontes

Federal University of Pernambuco

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patricia M. A. Farias

Federal University of Pernambuco

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geíza Alves de Azerêdo

Federal University of Pernambuco

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge