Regina Fillbrandt
University of Hamburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Regina Fillbrandt.
Clinical Cancer Research | 2006
Tobias Martens; Nils-Ole Schmidt; Carmen Eckerich; Regina Fillbrandt; Mark Merchant; Ralph Schwall; Manfred Westphal; Katrin Lamszus
Purpose: Expression of the receptor tyrosine kinase c-Met and its ligand scatter factor/hepatocyte growth factor (SF/HGF) are strongly increased in glioblastomas, where they promote tumor proliferation, migration, invasion, and angiogenesis. We used a novel one-armed anti-c-Met antibody to inhibit glioblastoma growth in vivo. Experimental Design: U87 glioblastoma cells (c-Met and SF/HGF positive) or G55 glioblastoma cells (c-Met positive and SF/HGF negative) were used to generate intracranial orthotopic xenografts in nude mice. The one-armed 5D5 (OA-5D5) anti-c-Met antibody was infused intratumorally using osmotic minipumps. Following treatment, tumor volumes were measured and tumors were analyzed histologically for extracellular matrix (ECM) components and proteases relevant to tumor invasion. Microarray analyses were done to determine the effect of the antibody on invasion-related genes. Results: U87 tumor growth, strongly driven by SF/HGF, was inhibited >95% with OA-5D5 treatment. In contrast, G55 tumors, which are not SF/HGF driven, did not respond to OA-5D5, suggesting that the antibody can have efficacy in SF/HGF-activated tumors. In OA-5D5-treated U87 tumors, cell proliferation was reduced >75%, microvessel density was reduced >90%, and apoptosis was increased >60%. Furthermore, OA-5D5 treatment decreased tumor cell density >2-fold, with a consequent increase in ECM deposition and increased immunoreactivity for laminin, fibronectin, and tenascin. Microarray studies showed no incresae in these ECM factors, rather down-regulation of urokinase-type plasminogen activator and matrix metalloproteinase 16 in glioblastoma cells treated with OA-5D5. Conclusions: Local treatment with OA-5D5 can almost completely inhibit intracerebral glioblastoma growth when SF/HGF is driving tumor growth. The mechanisms of tumor inhibition include antiproliferative, antiangiogenic, and proapoptotic effects.
Neurosurgery | 2003
Marc-Alexander Brockmann; Ulrike Ulbricht; Katrin Grüner; Regina Fillbrandt; Manfred Westphal; Katrin Lamszus
OBJECTIVEGlioma cell migration is determined by a complex interplay between soluble motogens and extracellular matrix components. Several growth factors are thought to be involved in glioma cell migration; however, little is known about their motogenic potency relative to one another. METHODSUsing modified Boyden chamber assays, we compared the chemotactic effects of scatter factor/hepatocyte growth factor (SF/HGF), transforming growth factor (TGF)-&agr;, TGF-&bgr;1, TGF-&bgr;2, epidermal growth factor (EGF), fibroblast growth factor (FGF)-1, FGF-2, insulin-like growth factor (IGF)-1, IGF-2, platelet-derived growth factor (PDGF)-AA, PDGF-BB, vascular endothelial growth factor (VEGF), pleiotrophin (PTN), and midkine (MK) in concentrations ranging from 1 pmol/L to 50 nmol/L on three different human glioblastoma cell lines. Checkerboard analyses distinguished between chemotaxis and chemokinesis. We further investigated the motogenic effects on human cerebral microvascular endothelial cells and analyzed receptor expression profiles. RESULTSSF/HGF was the most potent chemotactic factor for all three glioblastoma cell lines, inducing up to 33-fold stimulation of migration. TGF-&agr; showed the second strongest effect (up to 17-fold stimulation), and FGF-1 was also chemotactic for all three glioblastoma cell lines analyzed (maximal 4-fold effect). EGF, FGF-2, IGF-1, IGF-2, TGF-&bgr;1, and TGF-&bgr;2 were chemotactic for one or two of the cell lines (2- to 4-fold effects), whereas PDGF-AA, PDGF-BB, VEGF, PTN, and MK had no effect. In contrast, the most potent stimulators of cerebral microvascular endothelial cell migration were PDGF-AA (4-fold) and PDGF-BB (6-fold). CONCLUSIONThe expression levels of SF/HGF and TGF-&agr; as well as their respective receptors, MET and EGFR, are known to correlate with glioma malignancy grade. The particularly strong motogenic effects of these two growth factors suggest that they could be promising targets for an antimigratory component of glioma therapy, at least in comparison with the 12 other factors that were analyzed.
International Journal of Cancer | 2007
Carmen Eckerich; Svenja Zapf; Regina Fillbrandt; Sonja Loges; Manfred Westphal; Katrin Lamszus
The c‐Met receptor and its ligand scatter factor/hepatocyte growth factor (SF/HGF) are strongly overexpressed in malignant gliomas. Signaling through c‐Met as well as exposure to hypoxia can stimulate glioma cell migration and invasion. In several cancer cell types, hypoxia was shown to activate the c‐met promoter, which contains hypoxia inducible factor‐1 (HIF‐1) binding sites. We hypothesized that hypoxia might upregulate c‐Met also in glioma cells. Analyzing 18 different glioblastoma cell lines and 10 glioblastoma primary cultures, we found that in 50% of both the cell lines and the primary cultures c‐Met protein levels were increased following exposure to hypoxia. Upregulation of c‐met in response to hypoxia was also detected at the transcriptional level. In all primary cultures and in 16 of the 18 cell lines (89%), HIF‐1α levels were increased by hypoxia. Transfection of siRNA against HIF‐1α abgrogated the hypoxic induction of c‐Met, suggesting that c‐Met expression is upregulated by a HIF‐1α‐dependent mechanism. Hypoxia sensitized glioblastoma cell lines which showed hypoxic induction of c‐Met to the motogenic effects of SF/HGF. These findings suggest that approximately half of all human glioblastomas respond to hypoxia with an induction of c‐Met, which can enhance the stimulating effect of SF/HGF on tumor cell migration.
International Journal of Cancer | 2001
Katrin Lamszus; Lenard Lachenmayer; Uta Heinemann; Lan Kluwe; Ulrich Finckh; Wolfgang Höppner; Dimitrios Stavrou; Regina Fillbrandt; Manfred Westphal
Ependymomas arise from the ependymal cells at different locations throughout the brain and spinal cord. These tumors have a broad age distribution with a range from less than 1 year to more than 80 years. In some intramedullary spinal ependymomas, mutations in the neurofibromatosis 2 (NF2) gene and loss of heterozygosity (LOH) on chromosome arm 22q have been described. Cytogenetic studies have also identified alterations involving chromosome arm 11q, including rearrangements at 11q13, in ependymomas. We analyzed 21 intramedullary spinal, 14 ventricular, 11 filum terminale and 6 intracerebral ependymomas for mutations in the MEN1 gene, which is located at 11q13, and mutations in the NF2 gene, which is located at 22q12, as well as for LOH on 11q and 22q. NF2 mutations were found in 6 tumors, all of which were intramedullary spinal and all of which displayed LOH 22q. Allelic loss on 22q was found in 20 cases and was significantly more frequent in intramedullary spinal ependymomas than in tumors in other locations. LOH 11q was found in 7 patients and exhibited a highly significant inverse association with LOH 22q (p<0.001). A hemizygous MEN1 mutation was identified in 3 tumors, all of which were recurrences from the same patient. Interestingly, the initial tumor corresponded to WHO grade II and displayed LOH 11q but not yet a MEN1 mutation. In 2 subsequent recurrences, the tumor had progressed to anaplastic ependymoma (WHO grade III) and exhibited a nonsense mutation in exon 10 of MEN1 (W471X) in conjunction with LOH 11q. This suggests that loss of wild‐type MEN1 may be involved in the malignant progression of a subset of ependymomas. To conclude, our findings provide evidence for different genetic pathways involved in ependymoma formation and progression, which may allow to define genetically and clinically distinct tumor entities.
Clinical Cancer Research | 2005
Katrin Lamszus; Marc A. Brockmann; Carmen Eckerich; Peter Bohlen; Chad May; Ulrich Mangold; Regina Fillbrandt; Manfred Westphal
Purpose: Inhibition of angiogenesis can influence tumor cell invasion and metastasis. We previously showed that blockade of vascular endothelial growth factor receptor-2 (VEGFR-2) with the monoclonal antibody DC101 inhibited intracerebral glioblastoma growth but caused increased tumor cell invasion along the preexistent vasculature. In the present study, we attempted to inhibit glioma cell invasion using a monoclonal antibody against the epidermal growth factor receptor (EGFR), which in the context of human glioblastomas, has been implicated in tumor cell invasion. In addition, we analyzed whether blockade of vascular endothelial (VE)-cadherin as a different antiangiogenic target could also inhibit glioblastoma angiogenesis and growth. Experimental Designs: Nude mice who received intracerebral glioblastoma xenografts were treated using monoclonal antibodies against VEGFR-2 (DC101), EGFR (C225), and VE-cadherin (E4G10) either alone or in different combinations. Results: Increased tumor cell invasion provoked by DC101 monotherapy was inhibited by 50% to 66% by combined treatment with C225 and DC101. C225 inhibited glioblastoma cell migration in vitro, but had no effect on the volume of the main tumor mass or on tumor cell proliferation or apoptosis in vivo, either alone or in combination with DC101. The anti-VE-cadherin monoclonal antibody E4G10 was a weaker inhibitor of tumor angiogenesis and growth than DC101, and also caused a weaker increase in tumor cell invasion. Conclusions: Inhibition of angiogenesis achieved by blocking either VEGFR-2 or VE-cadherin can cause increased glioma cell invasion in an orthotopic model. Increased tumor cell invasion induced by potent inhibition of angiogenesis with DC101 could be inhibited by simultaneous blockade of EGFR.
Journal of Neurochemistry | 2006
Ulrike Ulbricht; Carmen Eckerich; Regina Fillbrandt; Manfred Westphal; Katrin Lamszus
The protein tyrosine phosphatase ζ/receptor‐type protein tyrosine phosphatase β (PTPζ/RPTPβ) and its ligand pleiotrophin (PTN) are overexpressed in human glioblastomas. Both molecules are involved in neuronal cell migration during CNS development. In addition, PTN can induce glioma cell migration which is at least in part mediated through binding to PTPζ/RPTPβ. To study the relevance of this ligand–receptor pair for glioma growth in vitro and in vivo, we transfected the human glioblastoma cell line U251‐MG with small interfering RNA (siRNA) directed against PTPζ/RPTPβ. Stable siRNA transfection resulted in strong down‐regulation of PTPζ/RPTPβ expression. When injected subcutaneously into nude mice, clones that expressed normal levels of PTPζ/RPTPβ (PTPζ + clones) formed exponentially growing tumours, whereas tumour growth was almost completely abrogated for clones that expressed reduced PTPζ/RPTPβ levels (PTPζ – clones). Similar results were obtained using an orthotopic intracerebral model. Proliferation of PTPζ – cells in vitro was significantly reduced compared with that of control clones. Matrix‐immobilized PTN stimulated the proliferation of PTPζ + cells but not of PTPζ – cells. Haptotactic migration induced by PTN was reduced for PTPζ – clones compared with control clones. Our findings suggest that antagonization of PTPζ/RPTPβ expression can inhibit glioma growth in vivo and may thus represent a potentially promising treatment strategy.
Neuro-oncology | 2001
Philip Kunkel; Sabine Müller; Peter Schirmacher; Dimitrios Stavrou; Regina Fillbrandt; Manfred Westphal; Katrin Lamszus
Scatter factor/hepatocyte growth factor (SF/HGF) is a pleiotropic cytokine that has been implicated in glioma invasion and angiogenesis. The SF/HGF receptor, MET, has been found to be expressed in neoplastic astrocytes as well as in endothelial cells of the tumor vasculature. Both SF/HGF and MET expression have also been described to correlate with the malignancy grade of human gliomas. However, most glioblastoma cell lines lack SF/HGF expression, raising the question of the cellular origin of SF/HGF in vivo. Using in situ hybridization, we analyzed glioblastomas, anaplastic astrocytomas, diffuse astrocytomas, pilocytic astrocytomas, and normal brain for the expression of SF/HGF mRNA. We detected strong SF/HGF expression by the majority of the tumor cells and by vascular endothelial cells in all glioblastoma specimens analyzed. Combined use of in situ hybridization with fluorescence immunohistochemistry confirmed the astrocytic origin of the SF/HGF-expressiong cells. In contrast, CD68-immunoreactive microglia/macrophages, as well as vascular smooth muscle cells reactive to alpha-smooth muscle actin, lacked SF/HGF expression. In anaplastic, diffuse, and pilocytic astrocytomas, SF/HGF expression was confined to a subset of tumor cells, and signals were less intense than in glioblastomas. In addition, we detected SF/HGF mRNA in cortical neurons. SF/HGF expression was not up regulated around necroses or at tumor margins. MET immunoreactivity was observed in GFAP-expressing astrocytic tumor cells and endothelial cells as well as in a subset of microglia/macrophages. We conclude that in vivo, both autocrine and paracrine stimulation of tumor cells and endothelium through the SF/HGF-MET system are likely to contribute to tumor invasion and angiogenesis. Lack of SF/HGF expression by most cultured glioblastoma cells is not representative of the in vivo situation and most likely represents a culture artifact.
Glia | 2006
Carmen Eckerich; Svenja Zapf; Ulrike Ulbricht; Sabine Müller; Regina Fillbrandt; Manfred Westphal; Katrin Lamszus
Contactin is a cell surface adhesion molecule that is normally expressed by neurons and oligodendrocytes. Particularly high levels of contactin are present during brain development. Using subtractive cloning, we identified contactin transcripts as overexpressed in glioblastomas compared with normal brain. We confirmed contactin overexpression in glioblastomas at the protein level, and localized contactin to the surface of glial fibrillary acidic protein (GFAP)‐expressing glioblastoma cells. In contrast, normal astrocytes did not express contactin. Analyzing different types of astrocytic tumors, we detected an association between increasing malignancy grade and contactin expression. Functionally, contactin had repellent effects on glioma cells in vitro, as demonstrated by adhesion and migration assays. Overexpression of contactin by transfection into glioblastoma cells did not alter the proliferation rate or adhesion to various extracellular matrix proteins as well as adhesion to cells expressing the specific contactin ligand the protein tyrosine phosphatase ζ (PTPζ). Our findings suggest that contactin has repellent effects on glioma cells to which it is presented as a ligand, but it does not alter the proliferative or adhesive capacities of cells that overexpress the molecule. The repulsive properties of contactin may be a key factor in glioma disaggregation, and may contribute to the diffuse infiltration pattern characteristic of glioma cells in human brain.
Cancer Research | 2001
Philip Kunkel; Ulrike Ulbricht; Peter Bohlen; Marc A. Brockmann; Regina Fillbrandt; Dimitrios Stavrou; Manfred Westphal; Katrin Lamszus
Clinical Cancer Research | 2003
Katrin Lamszus; Ulrike Ulbricht; Jakob Matschke; Marc A. Brockmann; Regina Fillbrandt; Manfred Westphal