Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Regina Hofmann-Lehmann is active.

Publication


Featured researches published by Regina Hofmann-Lehmann.


Nature Medicine | 2000

Human neutralizing monoclonal antibodies of the IgG1 subtype protect against mucosal simian-human immunodeficiency virus infection.

Timothy W. Baba; Vladimir Liska; Regina Hofmann-Lehmann; Josef Vlasak; Weidong Xu; Seyoum Ayehunie; Lisa A. Cavacini; Marshall R. Posner; Hermann Katinger; Gabriela Stiegler; Bruce J. Bernacky; Tahir A. Rizvi; Russell D. Schmidt; Lori R. Hill; Michale E. Keeling; Yichen Lu; Joel E. Wright; Ting Chao Chou; Ruth M. Ruprecht

Although maternal human immunodeficiency virus type 1 (HIV-1) transmission occurs during gestation, intrapartum and postpartum (by breast-feeding), 50–70% of all infected children seem to acquire HIV-1 shortly before or during delivery. Epidemiological evidence indicates that mucosal exposure is an important aspect of intrapartum HIV transmission. A simian immunodeficiency virus (SIV) macaque model has been developed that mimics the mucosal exposure that can occur during intrapartum HIV-1 transmission. To develop immunoprophylaxis against intrapartum HIV-1 transmission, we used SHIV–vpu+ (refs. 5,6), a chimeric simian–human virus that encodes the env gene of HIV-IIIB. Several combinations of human monoclonal antibodies against HIV-1 have been identified that neutralize SHIV–vpu+ completely in vitro through synergistic interaction. Here, we treated four pregnant macaques with a triple combination of the human IgG1 monoclonal antibodies F105, 2G12 and 2F5. All four macaques were protected against intravenous SHIV–vpu+ challenge after delivery. The infants received monoclonal antibodies after birth and were challenged orally with SHIV–vpu+ shortly thereafter. We found no evidence of infection in any infant during 6 months of follow-up. This demonstrates that IgG1 monoclonal antibodies protect against mucosal lentivirus challenge in neonates. We conclude that epitopes recognized by the three monoclonal antibodies are important determinants for achieving substantial protection, thus providing a rational basis for AIDS vaccine development.


Nature | 1996

A canine distemper virus epidemic in Serengeti lions ( Panthera leo )

Melody E. Roelke-Parker; Linda Munson; Craig Packer; Richard Kock; Sarah Cleaveland; Margaret A. Carpenter; Stephen J. O'Brien; Andreas Pospischil; Regina Hofmann-Lehmann; Hans Lutz; George L. M. Mwamengele; M. N. Mgasa; G. A. Machange; Brian A. Summers; Max J. G. Appel

CANINE distemper virus (CDV) is thought to have caused several fatal epidemics in canids within the Serengeti–Mara ecosystem of East Africa, affecting silver-backed jackals (Canis mesomelas) and bat-eared foxes (Otocyon megalotis) in 1978 (ref. 1), and African wild dogs (Lycaon pictus) in 1991 (refs 2, 3). The large, closely monitored Serengeti lion population4,5 was not affected in these epidemics. However, an epidemic caused by a morbillivirus closely related to CDV emerged abruptly in the lion population of the Serengeti National Park, Tanzania, in early 1994, resulting in fatal neurological disease characterized by grand mal seizures and myoclonus; the lions that died had encephalitis and pneumonia. Here we report the identification of CDV from these lions, and the close phylogenetic relationship between CDV isolates from lions and domestic dogs. By August 1994, 85% of the Serengeti lion population had anti-CDV antibodies, and the epidemic spread north to lions in the Maasai Mara National reserve, Kenya, and uncounted hyaenas, bat-eared foxes, and leopards were also affected.


Veterinary Immunology and Immunopathology | 1999

Quantitative real-time PCR for the measurement of feline cytokine mRNA.

Christian M. Leutenegger; Caroline N. Mislin; Brigitte Sigrist; Markus U. Ehrengruber; Regina Hofmann-Lehmann; Hans Lutz

Abstract We have developed real-time PCR systems to quantitate feline cytokine gene expression. The method is based on the cleavage of fluorescent dye-labelled probes by the 5′–3′ exonuclease activity of the Taq DNA polymerase during PCR and measurement of fluorescence intensity by a Sequence Detection System. The feline-specific TaqMan probes were designed to encompass an intron, thus allowing differentiation of complementary DNA versus genomic DNA amplification products. Quantitative analysis of cytokine cDNA concentrations was performed in comparison to feline GAPDH. Messenger RNA (mRNA) from the universally expressed housekeeping gene GAPDH proved to be useful as an amplification control and allowed for correction of variations in the efficiencies of RNA extraction and reverse transcription. GAPDH mRNAs were readily detectable in cDNAs prepared from unstimulated feline peripheral blood mononuclear cells (PBMCs) and from frozen cell pellets, while cytokines (Interleukin (IL)-4, IL-10, IL-12 p35, IL-12 p40, IFNγ, IL-16) were expressed at variable amounts. IFNγ transcription was found to be upregulated in stimulated PBMCs and feline cell lines. The synthesis of cDNA and the performance of the PCR in separate tubes proved to be of superior sensitivity compared to a single-tube based system. The assays described are highly reproducible, require no post-PCR manipulation of the amplicons and permit the analysis of several hundred PCR reactions per day. With this method it is possible to detect and quantify cytokine mRNA expression reliably in small amounts of cells even after storage of samples for at least 5 years.


Journal of Feline Medicine and Surgery | 2008

2008 American Association of Feline Practitioners' feline retrovirus management guidelines

Julie K. Levy; Cynda Crawford; Katrin Hartmann; Regina Hofmann-Lehmann; Susan E. Little; Eliza Sundahl; Vicki Thayer

Feline leukemia virus (FeLV) and feline immunodeficiency virus (FIV) are among the most common infectious diseases of cats. Although vaccines are available for both viruses, identification and segregation of infected cats form the cornerstone for preventing new infections. Guidelines in this report have been developed for diagnosis, prevention, treatment, and management of FeLV and FIV infections. All cats should be tested for FeLV and FIV infections at appropriate intervals based on individual risk assessments. This includes testing at the time of acquisition, following exposure to an infected cat or a cat of unknown infection status, prior to vaccination against FeLV or FIV, prior to entering group housing, and when cats become sick. No test is 100% accurate at all times under all conditions; results should be interpreted along with the patients health and risk factors. Retroviral tests can diagnose only infection, not clinical disease, and cats infected with FeLV or FIV may live for many years. A decision for euthanasia should never be based solely on whether or not the cat is infected. Vaccination against FeLV is highly recommended in kittens. In adult cats, antiretroviral vaccines are considered non-core and should be administered only if a risk assessment indicates they are appropriate. Few large controlled studies have been performed using antiviral or immunomodulating drugs for the treatment of naturally infected cats. More research is needed to identify best practices to improve long-term outcomes following retroviral infections in cats.


AIDS Research and Human Retroviruses | 2000

Sensitive and robust one-tube real-time reverse transcriptase-polymerase chain reaction to quantify SIV RNA load: comparison of one- versus two-enzyme systems.

Regina Hofmann-Lehmann; Ryan K. Swenerton; Vladimir Liska; Christian M. Leutenegger; Hans Lutz; Harold M. McClure; Ruth M. Ruprecht

Plasma viral RNA load is a key parameter in disease progression of lentiviral infections. To measure simian immunodeficiency virus (SIV) RNA loads, we have established a quantitative one-tube assay based on TaqMan chemistry. This real-time reverse transcriptase-polymerase chain reaction (RT-PCR) has advantages compared with previous methods, such as higher sensitivity, shorter time consumption, and low risk of cross-contamination. The sensitivity of the assay was optimized by comparing different enzyme systems. The one-enzyme protocol using rTth DNA polymerase was superior to two assays employing two enzymes. It detects 100% of the samples containing four copies of RNA transcript and allows quantification of viral RNA loads over an 8-log unit dynamic range. As few as 50 copies per milliliter of plasma can be detected within RNA extracted from 140 microl of plasma. This is especially relevant in studies employing neonatal macaques, from which only small volumes of blood can be sampled, and in studies in which low viral RNA loads are expected. Because of the use of rTth DNA polymerase, DNA contamination can be avoided by carryover prevention with uracil N-glycosylase (UNG). We demonstrate that for optimization of real-time PCR sensitivity, not only concentrations of different reagents but also different enzyme systems must be evaluated. Our assay facilitates and enhances the quantification of plasma RNA loads, a critical parameter for many studies, including evaluations of vaccine candidates or antiviral regimens.


Journal of Clinical Microbiology | 2006

Prevalence, Risk Factor Analysis, and Follow-Up of Infections Caused by Three Feline Hemoplasma Species in Cats in Switzerland

Barbara Willi; Felicitas S. Boretti; Claudia Baumgartner; Séverine Tasker; Bettina Wenger; Valentino Cattori; Marina L. Meli; Claudia E. Reusch; Hans Lutz; Regina Hofmann-Lehmann

ABSTRACT Recently, a third novel feline hemotropic Mycoplasma sp. (aka hemoplasma), “Candidatus Mycoplasma turicensis,” in a cat with hemolytic anemia has been described. This is the first study to investigate the prevalence, clinical manifestations, and risk factors for all three feline hemoplasma infections in a sample of 713 healthy and ill Swiss cats using newly designed quantitative real-time PCR assays. “Candidatus Mycoplasma haemominutum” infection was detected in 7.0% and 8.7% and Mycoplasma haemofelis was detected in 2.3% and 0.2% of healthy and ill cats, respectively. “Candidatus Mycoplasma turicensis” was only detected in six ill cats (1.1%); three of them were coinfected with “Candidatus Mycoplasma haemominutum.” The 16S rRNA gene sequence of 12 Swiss hemoplasma isolates revealed >98% similarity with previously published sequences. Hemoplasma infection was associated with male gender, outdoor access, and old age but not with retrovirus infection and was more frequent in certain areas of Switzerland. “Candidatus Mycoplasma haemominutum”-infected ill cats were more frequently diagnosed with renal insufficiency and exhibited higher renal blood parameters than uninfected ill cats. No correlation between hemoplasma load and packed cell volume was found, although several hemoplasma-infected cats, some coinfected with feline immunodeficiency virus or feline leukemia virus, showed hemolytic anemia. High M. haemofelis loads (>9 × 105 copies/ml blood) seem to lead to anemia in acutely infected cats but not in recovered long-term carriers. A repeated evaluation of 17 cats documented that the infection was acquired in one case by blood transfusion and that there were important differences among species regarding whether or not antibiotic administration led to the resolution of bacteremia.


Journal of Virology | 2001

Postnatal Passive Immunization of Neonatal Macaques with a Triple Combination of Human Monoclonal Antibodies against Oral Simian-Human Immunodeficiency Virus Challenge

Regina Hofmann-Lehmann; Josef Vlasak; Robert A. Rasmussen; Smith B; Timothy W. Baba; Vladimir Liska; Flavia Ferrantelli; David C. Montefiori; Harold M. McClure; Daniel C. Anderson; Bruce J. Bernacky; Tahir A. Rizvi; Russell D. Schmidt; Lori R. Hill; Michale E. Keeling; Hermann Katinger; Gabriela Stiegler; Lisa A. Cavacini; Marshall R. Posner; Ting-Chao Chou; Janet Andersen; Ruth M. Ruprecht

ABSTRACT To develop prophylaxis against mother-to-child human immunodeficiency virus (HIV) transmission, we established a simian-human immunodeficiency virus (SHIV) infection model in neonatal macaques that mimics intrapartum mucosal virus exposure (T. W. Baba et al., AIDS Res. Hum. Retroviruses 10:351–357, 1994). Using this model, neonates were protected from mucosal SHIV-vpu+challenge by pre- and postnatal treatment with a combination of three human neutralizing monoclonal antibodies (MAbs), F105, 2G12, and 2F5 (Baba et al., Nat. Med. 6:200–206, 2000). In the present study, we used this MAb combination only postnatally, thereby significantly reducing the quantity of antibodies necessary and rendering their potential use in humans more practical. We protected two neonates with this regimen against oral SHIV-vpu+ challenge, while four untreated control animals became persistently infected. Thus, synergistic MAbs protect when used as immunoprophylaxis without the prenatal dose. We then determined in vitro the optimal MAb combination against the more pathogenic SHIV89.6P, a chimeric virus encodingenv of the primary HIV89.6. Remarkably, the most potent combination included IgG1b12, which alone does not neutralize SHIV89.6P. We administered the combination of MAbs IgG1b12, 2F5, and 2G12 postnatally to four neonates. One of the four infants remained uninfected after oral challenge with SHIV89.6P, and two infants had no or a delayed CD4+ T-cell decline. In contrast, all control animals had dramatic drops in their CD4+ T cells by 2 weeks postexposure. We conclude that our triple MAb combination partially protected against mucosal challenge with the highly pathogenic SHIV89.6P. Thus, combination immunoprophylaxis with passively administered synergistic human MAbs may play a role in the clinical prevention of mother-to-infant transmission of HIV type 1.


Journal of Clinical Microbiology | 2005

Identification, Molecular Characterization, and Experimental Transmission of a New Hemoplasma Isolate from a Cat with Hemolytic Anemia in Switzerland

Barbara Willi; Felicitas S. Boretti; Valentino Cattori; Séverine Tasker; Marina L. Meli; Claudia E. Reusch; Hans Lutz; Regina Hofmann-Lehmann

ABSTRACT Recently, there has been a growing interest in hemotropic mycoplasmal species (also known as the hemoplasmas), the causative agents of infectious anemia in several mammalian species. In felids, two different hemoplasma species have been recognized: Mycoplasma haemofelis (formerly Haemobartonella felis) and “Candidatus Mycoplasma haemominutum.” Recently developed molecular methods have allowed sensitive and specific identification and quantification of these agents in feline blood samples. In applying these methods to an epidemiological study surveying the Swiss pet cat population for hemoplasma infection, we discovered a third novel and unique feline hemoplasma isolate in a blood sample collected from a cat that had exhibited clinical signs of severe hemolytic anemia. This agent was readily transmitted via intravenous inoculation to two specific-pathogen-free cats. One of these cats was immunocompromised by the administration of methylprednisolone acetate prior to inoculation, and this cat developed severe anemia. The other immunocompetent cat showed a moderate decrease in packed cell volume. Additionally, an increase in red blood cell osmotic fragility was observed. Sequencing of the entire 16S rRNA gene of the new hemoplasma isolate and phylogenetic analysis showed that the isolate was most closely related to two rodent hemotropic mycoplasmal species, M. coccoides and M. haemomuris. A quantitative real-time PCR assay specific for this newly discovered agent was developed, which will be a prerequisite for the diagnosis of infections with the new hemoplasma isolate.


Journal of Animal Ecology | 1999

Viruses of the Serengeti: Patterns of Infection and Mortality in African Lions

Craig Packer; Sonia Altizer; Max J. G. Appel; Eric W. Brown; Janice S. Martenson; Stephen J. O'Brien; Melody E. Roelke-Parker; Regina Hofmann-Lehmann; Hans Lutz

Summary 1. We present data on the temporal dynamics of six viruses that infect lions (Panthera leo) in the Serengeti National Park and Ngorongoro Crater, Tanzania. These populations have been studied continuously for the past 30 years, and previous research has documented their seroprevalence for feline herpesvirus, feline immunodeficiency virus (FIV), feline calicivirus, feline parvovirus, feline coronavirus and canine distemper virus (CDV). A seventh virus, feline leukaemia virus (FeLV), was absent from these animals. 2. Comprehensive analysis reveals that feline herpesvirus and FIV were consistently prevalent at high levels, indicating that they were endemic in the host populations. Feline calici‐, parvo‐ and coronavirus, and CDV repeatedly showed a pattern of seroprevalence that was indicative of discrete disease epidemics: a brief period of high exposure for each virus was followed by declining seroprevalence. 3. The timing of viral invasion suggests that different epidemic viruses are associated with different minimum threshold densities of susceptible hosts. Furthermore, the proportion of susceptibles that became infected during disease outbreaks was positively correlated with the number of susceptible hosts at the beginning of each outbreak. 4. Examination of the relationship between disease outbreaks and host fitness suggest that these viruses do not affect birth and death rates in lions, with the exception of the 1994 outbreak of canine distemper virus. Although the endemic viruses (FHV and FIV) were too prevalent to measure precise health effects, there was no evidence that FIV infection reduced host longevity.


Journal of General Virology | 2001

Feline leukaemia provirus load during the course of experimental infection and in naturally infected cats

Regina Hofmann-Lehmann; Jon B. Huder; Sabine Gruber; Felicitas S. Boretti; Brigitte Sigrist; Hans Lutz

Feline leukaemia virus (FeLV) infection in domestic cats can vary in its outcome (persistent, transient, no infection) for reasons that are not entirely known. It was hypothesized that the initial virus and provirus load could significantly influence the course of retrovirus infection. To determine the role of provirus loads, two methods of PCR, a nested PCR and a fluorogenic probe-based (TaqMan) real-time quantitative PCR, which were specific to the U3 region of FeLV-A were established. FeLV provirus in naturally and experimentally infected cats was then measured. Only 3 weeks after experimental FeLV-A infection, persistently infected cats demonstrated higher provirus loads and lower humoral immune responses than cats that had overcome antigenaemia. Lower initial provirus loads were associated with successful humoral immune responses. Unexpectedly, provirus in the buffy-coat cells of two cats that tested negative for the p27 antigen (a marker for viraemia) was also detected. In 597 Swiss cats, comparison of p27 antigen levels with PCR results revealed broad agreement. However, similar to the experimental situation, a significant number of animals (10%) was negative for the p27 antigen and FeLV-positive by PCR. These cats had a mean provirus load 300-fold lower than that of animals testing positive for the p27 antigen. In conclusion, an association between the provirus load and the outcome of FeLV infection was found. Detection of provirus carriers should contribute to further the control of FeLV. In addition, quantification of provirus loads will lead to a better understanding of FeLV pathogenesis and anti-retrovirus protective mechanisms.

Collaboration


Dive into the Regina Hofmann-Lehmann's collaboration.

Researchain Logo
Decentralizing Knowledge