Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Regina López-Aumatell is active.

Publication


Featured researches published by Regina López-Aumatell.


Nature Genetics | 2013

Combined sequence-based and genetic mapping analysis of complex traits in outbred rats

Amelie Baud; Roel Hermsen; Victor Guryev; Pernilla Stridh; Delyth Graham; Martin W. McBride; Tatiana Foroud; S. Calderari; Margarita Diez; Johan Öckinger; Amennai Daniel Beyeen; Alan Gillett; Nada Abdelmagid; André Ortlieb Guerreiro-Cacais; Maja Jagodic; Jonatan Tuncel; Ulrika Norin; Elisabeth Beattie; N. Huynh; William H. Miller; Daniel L. Koller; Imranul Alam; Samreen Falak; Mary Osborne-Pellegrin; Esther Martínez-Membrives; Toni Cañete; Gloria Blázquez; Elia Vicens-Costa; Carme Mont-Cardona; Sira Díaz-Morán

Genetic mapping on fully sequenced individuals is transforming understanding of the relationship between molecular variation and variation in complex traits. Here we report a combined sequence and genetic mapping analysis in outbred rats that maps 355 quantitative trait loci for 122 phenotypes. We identify 35 causal genes involved in 31 phenotypes, implicating new genes in models of anxiety, heart disease and multiple sclerosis. The relationship between sequence and genetic variation is unexpectedly complex: at approximately 40% of quantitative trait loci, a single sequence variant cannot account for the phenotypic effect. Using comparable sequence and mapping data from mice, we show that the extent and spatial pattern of variation in inbred rats differ substantially from those of inbred mice and that the genetic variants in orthologous genes rarely contribute to the same phenotype in both species.


Genome Research | 2008

A resource for the simultaneous high-resolution mapping of multiple quantitative trait loci in rats: The NIH heterogeneous stock

Martina Johannesson; Regina López-Aumatell; Pernilla Stridh; Margarita Diez; Jonatan Tuncel; Gloria Blázquez; Esther Martínez-Membrives; Toni Cañete; Elia Vicens-Costa; Delyth Graham; Richard R. Copley; Polinka Hernandez-Pliego; Amennai Daniel Beyeen; Johan Öckinger; Cristina Fernández-Santamaría; Pércio S. Gulko; Max Brenner; Adolf Tobeña; Marc Guitart-Masip; Lydia Giménez-Llort; Anna F. Dominiczak; Rikard Holmdahl; Dominique Gauguier; Tomas Olsson; Richard Mott; William Valdar; Eva E. Redei; Alberto Fernández-Teruel; Jonathan Flint

The laboratory rat (Rattus norvegicus) is a key tool for the study of medicine and pharmacology for human health. A large database of phenotypes for integrated fields such as cardiovascular, neuroscience, and exercise physiology exists in the literature. However, the molecular characterization of the genetic loci that give rise to variation in these traits has proven to be difficult. Here we show how one obstacle to progress, the fine-mapping of quantitative trait loci (QTL), can be overcome by using an outbred population of rats. By use of a genetically heterogeneous stock of rats, we map a locus contributing to variation in a fear-related measure (two-way active avoidance in the shuttle box) to a region on chromosome 5 containing nine genes. By establishing a protocol measuring multiple phenotypes including immunology, neuroinflammation, and hematology, as well as cardiovascular, metabolic, and behavioral traits, we establish the rat HS as a new resource for the fine-mapping of QTLs contributing to variation in complex traits of biomedical relevance.


Bone | 2011

Heterogeneous stock rat: A unique animal model for mapping genes influencing bone fragility

Imranul Alam; Daniel L. Koller; Qiwei Sun; Ryan K. Roeder; Toni Cañete; Gloria Blázquez; Regina López-Aumatell; Esther Martínez-Membrives; Elia Vicens-Costa; Carme Mont; Sira Díaz; Adolf Tobeña; Alberto Fernández-Teruel; Adam Whitley; Pernilla Strid; Margarita Diez; Martina Johannesson; Jonathan Flint; Michael J. Econs; Charles H. Turner; Tatiana Foroud

Previously, we demonstrated that skeletal mass, structure and biomechanical properties vary considerably among 11 different inbred rat strains. Subsequently, we performed quantitative trait loci (QTL) analysis in four inbred rat strains (F344, LEW, COP and DA) for different bone phenotypes and identified several candidate genes influencing various bone traits. The standard approach to narrowing QTL intervals down to a few candidate genes typically employs the generation of congenic lines, which is time consuming and often not successful. A potential alternative approach is to use a highly genetically informative animal model resource capable of delivering very high resolution gene mapping such as Heterogeneous stock (HS) rat. HS rat was derived from eight inbred progenitors: ACI/N, BN/SsN, BUF/N, F344/N, M520/N, MR/N, WKY/N and WN/N. The genetic recombination pattern generated across 50 generations in these rats has been shown to deliver ultra-high even gene-level resolution for complex genetic studies. The purpose of this study is to investigate the usefulness of the HS rat model for fine mapping and identification of genes underlying bone fragility phenotypes. We compared bone geometry, density and strength phenotypes at multiple skeletal sites in HS rats with those obtained from five of the eight progenitor inbred strains. In addition, we estimated the heritability for different bone phenotypes in these rats and employed principal component analysis to explore relationships among bone phenotypes in the HS rats. Our study demonstrates that significant variability exists for different skeletal phenotypes in HS rats compared with their inbred progenitors. In addition, we estimated high heritability for several bone phenotypes and biologically interpretable factors explaining significant overall variability, suggesting that the HS rat model could be a unique genetic resource for rapid and efficient discovery of the genetic determinants of bone fragility.


Journal of Bone and Mineral Research | 2014

High-resolution genome screen for bone mineral density in heterogeneous stock rat

Imranul Alam; Daniel L. Koller; Toni Cañete; Gloria Blázquez; Regina López-Aumatell; Esther Martínez-Membrives; Sira Díaz-Morán; Adolf Tobeña; Alberto Fernández-Teruel; Pernilla Stridh; Margarita Diez; Tomas Olsson; Martina Johannesson; Amelie Baud; Michael J. Econs; Tatiana Foroud

We previously demonstrated that skeletal mass, structure, and biomechanical properties vary considerably in heterogeneous stock (HS) rat strains. In addition, we observed strong heritability for several of these skeletal phenotypes in the HS rat model, suggesting that it represents a unique genetic resource for dissecting the complex genetics underlying bone fragility. The purpose of this study was to identify and localize genes associated with bone mineral density in HS rats. We measured bone phenotypes from 1524 adult male and female HS rats between 17 and 20 weeks of age. Phenotypes included dual‐energy X‐ray absorptiometry (DXA) measurements for bone mineral content and areal bone mineral density (aBMD) for femur and lumbar spine (L3–L5), and volumetric BMD measurements by CT for the midshaft and distal femur, femur neck, and fifth lumbar vertebra (L5). A total of 70,000 polymorphic single‐nucleotide polymorphisms (SNPs) distributed throughout the genome were selected from genotypes obtained from the Affymetrix rat custom SNPs array for the HS rat population. These SNPs spanned the HS rat genome with a mean linkage disequilibrium coefficient between neighboring SNPs of 0.95. Haplotypes were estimated across the entire genome for each rat using a multipoint haplotype reconstruction method, which calculates the probability of descent for each genotyped locus from each of the eight founder HS strains. The haplotypes were tested for association with each bone density phenotype via a mixed model with covariate adjustment. We identified quantitative trait loci (QTLs) for BMD phenotypes on chromosomes 2, 9, 10, and 13 meeting a conservative genomewide empiric significance threshold (false discovery rate [FDR] = 5%; p < 3 × 10−6). Importantly, most QTLs were localized to very small genomic regions (1–3 megabases [Mb]), allowing us to identify a narrow set of potential candidate genes including both novel genes and genes previously shown to have roles in skeletal development and homeostasis.


Physiology & Behavior | 2015

Spatial learning in the genetically heterogeneous NIH-HS rat stock and RLA-I/RHA-I rats: Revisiting the relationship with unconditioned and conditioned anxiety

Esther Martínez-Membrives; Regina López-Aumatell; Gloria Blázquez; Toni Cañete; Adolf Tobeña; Alberto Fernández-Teruel

To characterize learning/memory profiles for the first time in the genetically heterogeneous NIH-HS rat stock, and to examine whether these are associated with anxiety, we evaluated NIH-HS rats for spatial learning/memory in the Morris water maze (MWM) and in the following anxiety/fear tests: the elevated zero-maze (ZM; unconditioned anxiety), a context-conditioned fear test and the acquisition of two-way active avoidance (conditioned anxiety). NIH-HS rats were compared with the Roman High- (RHA-I) and Low-Avoidance (RLA-I) rat strains, given the well-known differences between the Roman strains/lines in anxiety-related behavior and in spatial learning/memory. The results show that: (i) As expected, RLA-I rats were more anxious in the ZM test, displayed more frequent context-conditioned freezing episodes and fewer avoidances than RHA-I rats. (ii) Scores of NIH-HS rats in these tests/tasks mostly fell in between those of the Roman rat strains, and were usually closer to the values of the RLA-I strain. (iii) Pigmented NIH-HS (only a small part of NIH-HS rats were albino) rats were the best spatial learners and displayed better spatial memory than the other three (RHA-I, RLA-I and NIH-HS albino) groups. (iv) Albino NIH-HS and RLA-I rats also showed better learning/memory than the RHA-I strain. (v) Within the NIH-HS stock, the most anxious rats in the ZM test presented the best learning and/or memory efficiency (regardless of pigmentation). In summary, NIH-HS rats display a high performance in spatial learning/memory tasks and a passive coping strategy when facing conditioned conflict situations. In addition, unconditioned anxiety in NIH-HS rats predicts better spatial learning/memory.


Bone | 2015

Fine mapping of bone structure and strength QTLs in heterogeneous stock rat

Imranul Alam; Daniel L. Koller; Toni Cañete; Gloria Blázquez; Carme Mont-Cardona; Regina López-Aumatell; Esther Martínez-Membrives; Sira Díaz-Morán; Adolf Tobeña; Alberto Fernández-Teruel; Pernilla Stridh; Margarita Diez; Tomas Olsson; Martina Johannesson; Amelie Baud; Michael J. Econs; Tatiana Foroud

We previously demonstrated that skeletal structure and strength phenotypes vary considerably in heterogeneous stock (HS) rats. These phenotypes were found to be strongly heritable, suggesting that the HS rat model represents a unique genetic resource for dissecting the complex genetic etiology underlying bone fragility. The purpose of this study was to identify and localize genes associated with bone structure and strength phenotypes using 1524 adult male and female HS rats between 17 to 20 weeks of age. Structure measures included femur length, neck width, head width; femur and lumbar spine (L3-5) areas obtained by DXA; and cross-sectional areas (CSA) at the midshaft, distal femur and femoral neck, and the 5th lumbar vertebra measured by CT. In addition, measures of strength of the whole femur and femoral neck were obtained. Approximately 70,000 polymorphic SNPs distributed throughout the rat genome were selected for genotyping, with a mean linkage disequilibrium coefficient between neighboring SNPs of 0.95. Haplotypes were estimated across the entire genome for each rat using a multipoint haplotype reconstruction method, which calculates the probability of descent at each locus from each of the 8 HS founder strains. The haplotypes were then tested for association with each structure and strength phenotype via a mixed model with covariate adjustment. We identified quantitative trait loci (QTLs) for structure phenotypes on chromosomes 3, 8, 10, 12, 17 and 20, and QTLs for strength phenotypes on chromosomes 5, 10 and 11 that met a conservative genome-wide empiric significance threshold (FDR=5%; P<3×10(-6)). Importantly, most QTLs were localized to very narrow genomic regions (as small as 0.3 Mb and up to 3 Mb), each harboring a small set of candidate genes, both novel and previously shown to have roles in skeletal development and homeostasis.


Behavioural Brain Research | 2012

Coping style and stress hormone responses in genetically heterogeneous rats: Comparison with the Roman rat strains

Sira Díaz-Morán; Marta Palència; Carme Mont-Cardona; Toni Cañete; Gloria Blázquez; Esther Martínez-Membrives; Regina López-Aumatell; Adolf Tobeña; Alberto Fernández-Teruel


Behavioural Brain Research | 2009

Unlearned anxiety predicts learned fear: a comparison among heterogeneous rats and the Roman rat strains.

Regina López-Aumatell; Elia Vicens-Costa; Marc Guitart-Masip; Esther Martínez-Membrives; William Valdar; Martina Johannesson; Toni Cañete; Gloria Blázquez; P. Driscoll; Jonathan Flint; Adolf Tobeña; Alberto Fernández-Teruel


Psicothema | 2009

The Roman High- and Low-Avoidance rat strains differ in fear- potentiated startle and classical aversive conditioning

Regina López-Aumatell; Gloria Blázquez; Luis Gil; Raúl Aguilar; Toni Cañete; Lydia Giménez-Llort; Adolf Tobeña; Albert Fernández-Teruel


Behavioural Brain Research | 2008

Fearfulness in a large N/Nih genetically heterogeneous rat stock: differential profiles of timidity and defensive flight in males and females.

Regina López-Aumatell; Marc Guitart-Masip; Elia Vicens-Costa; Lydia Giménez-Llort; William Valdar; Martina Johannesson; Jonathan Flint; Adolf Tobeña; Alberto Fernández-Teruel

Collaboration


Dive into the Regina López-Aumatell's collaboration.

Top Co-Authors

Avatar

Gloria Blázquez

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Toni Cañete

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Adolf Tobeña

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Esther Martínez-Membrives

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Alberto Fernández-Teruel

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Carme Mont-Cardona

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Elia Vicens-Costa

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

Sira Díaz-Morán

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta Palència

Autonomous University of Barcelona

View shared research outputs
Researchain Logo
Decentralizing Knowledge