Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Regina Preisig-Müller is active.

Publication


Featured researches published by Regina Preisig-Müller.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Heteromerization of Kir2.x potassium channels contributes to the phenotype of Andersen's syndrome.

Regina Preisig-Müller; Günter Schlichthörl; Tobias Goerge; Steffen Heinen; Andrea Brüggemann; Sindhu Rajan; Christian Derst; Rüdiger W. Veh; Jürgen Daut

Andersens syndrome, an autosomal dominant disorder related to mutations of the potassium channel Kir2.1, is characterized by cardiac arrhythmias, periodic paralysis, and dysmorphic bone structure. The aim of our study was to find out whether heteromerization of Kir2.1 channels with wild-type Kir2.2 and Kir2.3 channels contributes to the phenotype of Andersens syndrome. The following results show that Kir2.x channels can form functional heteromers: (i) HEK293 cells transfected with Kir2.x–Kir2.y concatemers expressed inwardly rectifying K+ channels with a conductance of 28–30 pS. (ii) Expression of Kir2.x–Kir2.y concatemers in Xenopus oocytes produced inwardly rectifying, Ba2+ sensitive currents. (iii) When Kir2.1 and Kir2.2 channels were coexpressed in Xenopus oocytes the IC50 for Ba2+ block of the inward rectifier current differed substantially from the value expected for independent expression of homomeric channels. (iv) Coexpression of nonfunctional Kir2.x constructs, in which the GYG region of the pore region was replaced by AAA, with wild-type Kir2.x channels produced both homomeric and heteromeric dominant-negative effects. (v) Kir2.1 and Kir2.3 channels could be coimmunoprecipitated in membrane extracts from isolated guinea pig cardiomyocytes. (vi) Yeast two-hybrid analysis showed interaction between the N- and C-terminal intracellular domains of different Kir2.x subunits. Coexpression of Kir2.1 mutants related to Andersens syndrome with wild-type Kir2.x channels showed a dominant negative effect, the extent of which varied between different mutants. Our results suggest that differential tetramerization of the mutant allele of Kir2.1 with wild-type Kir2.1, Kir2.2, and Kir2.3 channels represents the molecular basis of the extraordinary pleiotropy of Andersens syndrome.


The Journal of Physiology | 2001

Comparison of cloned Kir2 channels with native inward rectifier K+ channels from guinea-pig cardiomyocytes.

Gong Xin Liu; Christian Derst; Günter Schlichthörl; Steffen Heinen; Guiscard Seebohm; Andrea Brüggemann; Wolfgang Kummer; Rüdiger W. Veh; Jürgen Daut; Regina Preisig-Müller

1 The aim of the study was to compare the properties of cloned Kir2 channels with the properties of native rectifier channels in guinea‐pig (gp) cardiac muscle. The cDNAs of gpKir2.1, gpKir2.2, gpKir2.3 and gpKir2.4 were obtained by screening a cDNA library from guinea‐pig cardiac ventricle. 2 A partial genomic structure of all gpKir2 genes was deduced by comparison of the cDNAs with the nucleotide sequences derived from a guinea‐pig genomic library. 3 The cell‐specific expression of Kir2 channel subunits was studied in isolated cardiomyocytes using a multi‐cell RT‐PCR approach. It was found that gpKir2.1, gpKir2.2 and gpKir2.3, but not gpKir2.4, are expressed in cardiomyocytes. 4 Immunocytochemical analysis with polyclonal antibodies showed that expression of Kir2.4 is restricted to neuronal cells in the heart. 5 After transfection in human embryonic kidney cells (HEK293) the mean single‐channel conductance with symmetrical K+ was found to be 30.6 pS for gpKir2.1, 40.0 pS for gpKir2.2 and 14.2 pS for Kir2.3. 6 Cell‐attached measurements in isolated guinea‐pig cardiomyocytes (n= 351) revealed three populations of inwardly rectifying K+ channels with mean conductances of 34.0, 23.8 and 10.7 pS. 7 Expression of the gpKir2 subunits in Xenopus oocytes showed inwardly rectifying currents. The Ba2+ concentrations required for half‐maximum block at ‐100 mV were 3.24 μm for gpKir2.1, 0.51 μm for gpKir2.2, 10.26 μm for gpKir2.3 and 235 μm for gpKir2.4. 8 Ba2+ block of inward rectifier channels of cardiomyocytes was studied in cell‐attached recordings. The concentration and voltage dependence of Ba2+ block of the large‐conductance inward rectifier channels was virtually identical to that of gpKir2.2 expressed in Xenopus oocytes. 9 Our results suggest that the large‐conductance inward rectifier channels found in guinea‐pig cardiomyocytes (34.0 pS) correspond to gpKir2.2. The intermediate‐conductance (23.8 pS) and low‐conductance (10.7 pS) channels described here may correspond to gpKir2.1 and gpKir2.3, respectively.


The Journal of Physiology | 2002

Interaction with 14-3-3 proteins promotes functional expression of the potassium channels TASK-1 and TASK-3.

Sindhu Rajan; Regina Preisig-Müller; Erhard Wischmeyer; Ralf B. Nehring; Peter J. Hanley; Vijay Renigunta; Boris Musset; Günter Schlichthörl; Christian Derst; Andreas Karschin; Jürgen Daut

The two‐pore‐domain potassium channels TASK‐1, TASK‐3 and TASK‐5 possess a conserved C‐terminal motif of five amino acids. Truncation of the C‐terminus of TASK‐1 strongly reduced the currents measured after heterologous expression in Xenopus oocytes or HEK293 cells and decreased surface membrane expression of GFP‐tagged channel proteins. Two‐hybrid analysis showed that the C‐terminal domain of TASK‐1, TASK‐3 and TASK‐5, but not TASK‐4, interacts with isoforms of the adapter protein 14‐3‐3. A pentapeptide motif at the extreme C‐terminus of TASK‐1, RRx(S/T)x, was found to be sufficient for weak but significant interaction with 14‐3‐3, whereas the last 40 amino acids of TASK‐1 were required for strong binding. Deletion of a single amino acid at the C‐terminal end of TASK‐1 or TASK‐3 abolished binding of 14‐3‐3 and strongly reduced the macroscopic currents observed in Xenopus oocytes. TASK‐1 mutants that failed to interact with 14‐3‐3 isoforms (V411*, S410A, S410D) also produced only very weak macroscopic currents. In contrast, the mutant TASK‐1 S409A, which interacts with 14‐3‐3‐like wild‐type channels, displayed normal macroscopic currents. Co‐injection of 14‐3‐3ζ cRNA increased TASK‐1 current in Xenopus oocytes by about 70 %. After co‐transfection in HEK293 cells, TASK‐1 and 14‐3‐3ζ (but not TASK‐1ΔC5 and 14‐3‐3ζ) could be co‐immunoprecipitated. Furthermore, TASK‐1 and 14‐3‐3 could be co‐immunoprecipitated in synaptic membrane extracts and postsynaptic density membranes. Our findings suggest that interaction of 14‐3‐3 with TASK‐1 or TASK‐3 may promote the trafficking of the channels to the surface membrane.


Molecular and Cellular Neuroscience | 2001

Expression Pattern in Brain of TASK-1, TASK-3, and a Tandem Pore Domain K+ Channel Subunit, TASK-5, Associated with the Central Auditory Nervous System

Christine Karschin; Erhard Wischmeyer; Regina Preisig-Müller; Sindhu Rajan; Christian Derst; Karl-Heinz Grzeschik; Jürgen Daut; Andreas Karschin

TWIK-related acid-sensitive K(+) (TASK) channels contribute to setting the resting potential of mammalian neurons and have recently been defined as molecular targets for extracellular protons and volatile anesthetics. We have isolated a novel member of this subfamily, hTASK-5, from a human genomic library and mapped it to chromosomal region 20q12-20q13. hTASK-5 did not functionally express in Xenopus oocytes, whereas chimeric TASK-5/TASK-3 constructs containing the region between M1 and M3 of TASK-3 produced K(+) selective currents. To better correlate TASK subunits with native K(+) currents in neurons the precise cellular distribution of all TASK family members was elucidated in rat brain. A comprehensive in situ hybridization analysis revealed that both TASK-1 and TASK-3 transcripts are most strongly expressed in many neurons likely to be cholinergic, serotonergic, or noradrenergic. In contrast, TASK-5 expression is found in olfactory bulb mitral cells and Purkinje cells, but predominantly associated with the central auditory pathway. Thus, TASK-5 K(+) channels, possibly in conjunction with auxiliary proteins, may play a role in the transmission of temporal information in the auditory system.


Traffic | 2006

The Retention Factor p11 Confers an Endoplasmic Reticulum-Localization Signal to the Potassium Channel TASK-1

Vijay Renigunta; Hebao Yuan; Marylou Zuzarte; Susanne Rinné; Annett Koch; Erhard Wischmeyer; Günter Schlichthörl; Yadong Gao; Andreas Karschin; Ralf Jacob; Blanche Schwappach; Jürgen Daut; Regina Preisig-Müller

The interaction of the adaptor protein p11, also denoted S100A10, with the C‐terminus of the two‐pore‐domain K+ channel TASK‐1 was studied using yeast two‐hybrid analysis, glutathione S‐transferase pulldown, and co‐immunoprecipitation. We found that p11 interacts with a 40 amino‐acid region in the proximal C‐terminus of the channel. In heterologous expression systems, deletion of the p11‐interacting domain enhanced surface expression of TASK‐1. Attachment of the p11‐interacting domain to the cytosolic tail of the reporter protein CD8 caused retention/retrieval of the construct in the endoplasmic reticulum (ER). Attachment of the last 36 amino acids of p11 to CD8 also caused ER localization, which was abolished by removal or mutation of a putative retention motif (H/K)xKxxx, at the C‐terminal end of p11. Imaging of EGFP‐tagged TASK‐1 channels in COS cells suggested that wild‐type TASK‐1 was largely retained in the ER. Knockdown of p11 with siRNA enhanced trafficking of TASK‐1 to the surface membrane. Our results suggest that binding of p11 to TASK‐1 retards the surface expression of the channel, most likely by virtue of a di‐lysine retention signal at the C‐terminus of p11. Thus, the cytosolic protein p11 may represent a ‘retention factor’ that causes localization of the channel to the ER.


The Journal of Physiology | 2000

ATP-sensitive potassium channels in capillaries isolated from guinea-pig heart

Michael Mederos y Schnitzler; Christian Derst; Jürgen Daut; Regina Preisig-Müller

1 The full‐length cDNAs of two different α‐subunits (Kir6.1 and Kir6.2) and partial cDNAs of three different β‐subunits (SUR1, SUR2A and SUR2B) of ATP‐sensitive potassium (KATP) channels of the guinea‐pig (gp) were obtained by screening a cDNA library from the ventricle of guinea‐pig heart. 2 Cell‐specific reverse‐transcriptase PCR with gene‐specific intron‐spanning primers showed that gpKir6.1, gpKir6.2 and gpSUR2B were expressed in a purified fraction of capillary endothelial cells. In cardiomyocytes, gpKir6.1, gpKir6.2, gpSUR1 and gpSUR2A were detected. 3 Patch‐clamp measurements were carried out in isolated capillary fragments consisting of 3–15 endothelial cells. The membrane capacitance measured in the whole‐cell mode was 19.9 ± 1.0 pF and was independent of the length of the capillary fragment, which suggests that the endothelial cells were not electrically coupled under our experimental conditions. 4 The perforated‐patch technique was used to measure the steady‐state current‐voltage relation of capillary endothelial cells. Application of K+ channel openers (rilmakalim or diazoxide) or metabolic inhibition (250 μm 2,4‐dinitrophenol plus 10 mM deoxyglucose) induced a current that reversed near the calculated K+ equilibrium potential. 5 Rilmakalim (1 μm), diazoxide (300 μm) and metabolic inhibition increased the slope conductance measured at −55 mV by a factor of 9.0 (±1.8), 2.5 (±0.2) and 3.9 (±1.7), respectively. The effects were reversed by glibenclamide (1 μm). 6 Our results suggest that capillary endothelial cells from guinea‐pig heart express KATP channels composed of SUR2B and Kir6.1 and/or Kir6.2 subunits. The hyperpolarization elicited by the opening of KATP channels may lead to an increase in free cytosolic Ca2+, and thus modulate the synthesis of NO and the permeability of the capillary wall.


Plant Molecular Biology | 1999

Characterization of a pine multigene family containing elicitor-responsive stilbene synthase genes.

Regina Preisig-Müller; Axel Schwekendiek; Ilka Brehm; Hans-Jorg Reif; Helmut Kindl

Young pine seedlings respond to environmental stress by induced synthesis of pinosylvin, a stilbene phytoalexin. Heartwood of pine trees is characterized by a high content of pinosylvin. The formation of pinosylvin from cinnamoyl-CoA and three molecules malonyl-CoA catalysed by pinosylvin synthase is typical of the genus Pinus. Its enzyme activity not detectable in unstressed seedlings is substantially increased upon application of stimuli like UV-light or infection with the phytopathogenic fungus Botrytis cinerea. A genomic DNA library was screened with pinosylvin synthase cDNA pSP-54 as a probe. Ten clones were isolated and grouped into five subclasses according to the size of their introns. After subcloning into plasmid T7T3, four different members of the five gene subclasses were characterized by sequencing. Emphasis was put on isolating various promoters and analyzing and comparing their responsiveness. The amino acid sequences deduced from genes PST-1, PST-2, PST-3 and PST-5 shared an overall identity of more than 95%. In gene PST-5, the putative translation start site ATG was replaced by CTG. While promoter regions near the TATAA box were almost identical PST-1, PST-2 and PST-3, further upstream sequences differed substantially. Differences in promoter strength were analysed both in transgenic tobacco plants and by transient expression in tobacco protoplasts. Constructs used contained the bacterial β-glucuronidase under the control of the promoters of pine genes PST-1, PST-2 and PST-3. Upon treatment with UV light or fungal elicitor, the promoter of PST-1 showed highest responsiveness and led to tissue-specific expression in vascular bundles. The data suggest that in pine the gene product of PST-1 is responsible for both the stress response in seedlings and pinosylvin formation in the heartwood.


Plant Molecular Biology | 1993

Thiolase mRNA translated in vitro yields a peptide with a putative N-terminal presequence.

Regina Preisig-Müller; Helmut Kindl

Thiolase is part of the fatty acid oxidation machinery which in plants is located within glyoxysomes or peroxisomes. In cucumber cotyledons, proteolytic modification of thiolase takes place during the transfer of the cytosolic precursor into glyoxysomes prior to the intraorganellar assembly of the mature enzyme. This was shown by size comparison of the in vitro synthesized precursor and the 45 kDa subunit of the homodimeric glyoxysomal form. We isolated a full-length cDNA clone encoding the 48 539 Da precursor of thiolase. This plant protein displayed 40% and 47% identity with the precursor of fungal peroxisomal thiolase and human peroxisomal thiolase, respectively. Compared to bacterial thiolases, the precursor of the plant enzyme was distinguished by an N-terminal extension of 34 amino acid residues. This putative targeting sequence of cucumber thiolase shows similarities with the cleavable presequences of rat peroxisomal thiolase and plant peroxisomal malate dehydrogenase.


The Journal of Physiology | 2009

Intracellular traffic of the K+ channels TASK-1 and TASK-3: role of N- and C-terminal sorting signals and interaction with 14-3-3 proteins.

Marylou Zuzarte; Katja Heusser; Vijay Renigunta; Günter Schlichthörl; Susanne Rinné; Erhard Wischmeyer; Jürgen Daut; Blanche Schwappach; Regina Preisig-Müller

The two‐pore‐domain potassium channels TASK‐1 (KCNK3) and TASK‐3 (KCNK9) modulate the electrical activity of neurons and many other cell types. We expressed TASK‐1, TASK‐3 and related reporter constructs in Xenopus oocytes, mammalian cell lines and various yeast strains to study the mechanisms controlling their transport to the surface membrane and the role of 14‐3‐3 proteins. We measured potassium currents with the voltage‐clamp technique and fused N‐ and C‐terminal fragments of the channels to various reporter proteins to study changes in subcellular localisation and surface expression. Mutational analysis showed that binding of 14‐3‐3 proteins to the extreme C‐terminus of TASK‐1 and TASK‐3 masks a tri‐basic motif, KRR, which differs in several important aspects from canonical arginine‐based (RxR) or lysine‐based (KKxx) retention signals. Pulldown experiments with GST fusion proteins showed that the KRR motif in the C‐terminus of TASK‐3 channels was able to bind to COPI coatomer. Disabling the binding of 14‐3‐3, which exposes the KRR motif, caused localisation of the GFP‐tagged channel protein mainly to the Golgi complex. TASK‐1 and TASK‐3 also possess a di‐basic N‐terminal retention signal, KR, whose function was found to be independent of the binding of 14‐3‐3. Suppression of channel surface expression with dominant‐negative channel mutants revealed that interaction with 14‐3‐3 has no significant effect on the dimeric assembly of the channels. Our results give a comprehensive description of the mechanisms by which 14‐3‐3 proteins, together with N‐ and C‐terminal sorting signals, control the intracellular traffic of TASK‐1 and TASK‐3.


The Journal of Physiology | 2006

Effects of divalent cations and spermine on the K+ channel TASK-3 and on the outward current in thalamic neurons

Boris Musset; Sven G. Meuth; Gong Xin Liu; Christian Derst; Sven Wegner; Hans-Christian Pape; Thomas Budde; Regina Preisig-Müller; Jürgen Daut

The potassium channels TASK‐1 and TASK‐3 show high sequence homology but differ in their sensitivity to extracellular divalent cations. Heterologous expression in HEK293 cells showed that the single‐channel conductance of TASK‐3 increased approximately four‐fold after removal of external divalent cations, whereas the conductance of TASK‐1 was unaffected. Replacing the glutamate at position 70 of TASK‐3 by a lysine or arginine residue abolished the sensitivity to divalent cations. The reverse mutation in TASK‐1 (K70E) induced sensitivity to divalent cations. The organic polycations spermine and ruthenium red modulated the conductance of TASK‐3 in a similar way as Ca2+ or Mg2+. Our data suggest that these effects were mediated by shielding of the negative charges in the extracellular loops of TASK‐3. Whole‐cell currents carried by TASK‐3 channels were inhibited by spermine and ruthenium red even in the presence of external divalent cations. These data suggest that, in addition to their effect on single‐channel conductance, spermine and ruthenium red decreased the open probability of TASK‐3 channels, probably by binding to residue E70. The standing outward current in thalamocortical relay neurons, which is largely carried by TASK channels, was also inhibited by divalent cations and spermine. Using the differential sensitivity of TASK‐1 and TASK‐3 to divalent cations and spermine we found that about 20% of the standing outward current in thalamocortical relay neurons flows through TASK‐3 channels. We conclude from our results that inhibition of TASK‐3 channels may contribute to the neuromodulatory effect of spermine released from neurons during repetitive activity or during hypoxia.

Collaboration


Dive into the Regina Preisig-Müller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge