Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Regina Savtchenko is active.

Publication


Featured researches published by Regina Savtchenko.


Biochemistry | 2010

The α-Helical C-Terminal Domain of Full-Length Recombinant PrP Converts to an In-Register Parallel β-Sheet Structure in PrP Fibrils: Evidence from Solid State Nuclear Magnetic Resonance

Robert Tycko; Regina Savtchenko; Valeriy G. Ostapchenko; Natallia Makarava; Ilia V. Baskakov

We report the results of solid state nuclear magnetic resonance (NMR) measurements on amyloid fibrils formed by the full-length prion protein PrP (residues 23−231, Syrian hamster sequence). Measurements of intermolecular 13C−13C dipole−dipole couplings in selectively carbonyl-labeled samples indicate that β-sheets in these fibrils have an in-register parallel structure, as previously observed in amyloid fibrils associated with Alzheimer’s disease and type 2 diabetes and in yeast prion fibrils. Two-dimensional 13C−13C and 15N−13C solid state NMR spectra of a uniformly 15N- and 13C-labeled sample indicate that a relatively small fraction of the full sequence, localized to the C-terminal end, forms the structurally ordered, immobilized core. Although unique site-specific assignments of the solid state NMR signals cannot be obtained from these spectra, analysis with a Monte Carlo/simulated annealing algorithm suggests that the core is comprised primarily of residues in the 173−224 range. These results are consistent with earlier electron paramagnetic resonance studies of fibrils formed by residues 90−231 of the human PrP sequence, formed under somewhat different conditions [Cobb, N. J., Sonnichsen, F. D., McHaourab, H., and Surewicz, W. K. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 18946−18951], suggesting that an in-register parallel β-sheet structure formed by the C-terminal end may be a general feature of PrP fibrils prepared in vitro.


PLOS Pathogens | 2011

Genesis of Mammalian Prions: From Non-infectious Amyloid Fibrils to a Transmissible Prion Disease

Natallia Makarava; Gabor G. Kovacs; Regina Savtchenko; Irina Alexeeva; Herbert Budka; Robert G. Rohwer; Ilia V. Baskakov

The transmissible agent of prion disease consists of a prion protein in its abnormal, β-sheet rich state (PrPSc), which is capable of replicating itself according to the template-assisted mechanism. This mechanism postulates that the folding pattern of a newly recruited polypeptide chain accurately reproduces that of a PrPSc template. Here we report that authentic PrPSc and transmissible prion disease can be generated de novo in wild type animals by recombinant PrP (rPrP) amyloid fibrils, which are structurally different from PrPSc and lack any detectable PrPSc particles. When induced by rPrP fibrils, a long silent stage that involved two serial passages preceded development of the clinical disease. Once emerged, the prion disease was characterized by unique clinical, neuropathological, and biochemical features. The long silent stage to the disease was accompanied by significant transformation in neuropathological properties and biochemical features of the proteinase K-resistant PrP material (PrPres) before authentic PrPSc evolved. The current work illustrates that transmissible prion diseases can be induced by PrP structures different from that of authentic PrPSc and suggests that a new mechanism different from the classical templating exists. This new mechanism designated as “deformed templating” postulates that a change in the PrP folding pattern from the one present in rPrP fibrils to an alternative specific for PrPSc can occur. The current work provides important new insight into the mechanisms underlying genesis of the transmissible protein states and has numerous implications for understanding the etiology of neurodegenerative diseases.


The Journal of Neuroscience | 2012

A New Mechanism for Transmissible Prion Diseases

Natallia Makarava; Gabor G. Kovacs; Regina Savtchenko; Irina Alexeeva; Valeriy G. Ostapchenko; Herbert Budka; Robert G. Rohwer; Ilia V. Baskakov

The transmissible agent of prion disease consists of prion protein (PrP) in β-sheet-rich state (PrPSc) that can replicate its conformation according to a template-assisted mechanism. This mechanism postulates that the folding pattern of a newly recruited polypeptide accurately reproduces that of the PrPSc template. Here, three conformationally distinct amyloid states were prepared in vitro using Syrian hamster recombinant PrP (rPrP) in the absence of cellular cofactors. Surprisingly, no signs of prion infection were found in Syrian hamsters inoculated with rPrP fibrils that resembled PrPSc, whereas an alternative amyloid state, with a folding pattern different from that of PrPSc, induced a pathogenic process that led to transmissible prion disease. An atypical proteinase K-resistant, transmissible PrP form that resembled the structure of the amyloid seeds was observed during a clinically silent stage before authentic PrPSc emerged. The dynamics between the two forms suggest that atypical proteinase K-resistant PrP (PrPres) gave rise to PrPSc. While no PrPSc was found in preparations of fibrils using protein misfolding cyclic amplification with beads (PMCAb), rPrP fibrils gave rise to atypical PrPres in modified PMCAb, suggesting that atypical PrPres was the first product of PrPC misfolding triggered by fibrils. The current work demonstrates that a new mechanism responsible for prion diseases different from the PrPSc-templated or spontaneous conversion of PrPC into PrPSc exists. This study provides compelling evidence that noninfectious amyloids with a structure different from that of PrPSc could lead to transmissible prion disease. This work has numerous implications for understanding the etiology of prion and other neurodegenerative diseases.


Journal of Molecular Biology | 2010

Two amyloid states of the prion protein display significantly different folding patterns

Valeriy G. Ostapchenko; Michael R. Sawaya; Natallia Makarava; Regina Savtchenko; K. Peter R. Nilsson; David Eisenberg; Ilia V. Baskakov

It has been well established that a single amino acid sequence can give rise to several conformationally distinct amyloid states. The extent to which amyloid structures formed within the same sequence are different, however, remains unclear. To address this question, we studied two amyloid states (referred to as R- and S-fibrils) produced in vitro from highly purified full-length recombinant prion protein. Several biophysical techniques including X-ray diffraction, CD, Fourier transform infrared spectroscopy (FTIR), hydrogen-deuterium exchange, proteinase K digestion, and binding of a conformation-sensitive fluorescence dye revealed that R- and S-fibrils have substantially different secondary, tertiary, and quaternary structures. While both states displayed a 4. 8-A meridional X-ray diffraction typical for amyloid cross-beta-spines, they showed markedly different equatorial profiles, suggesting different folding pattern of beta-strands. The experiments on hydrogen-deuterium exchange monitored by FTIR revealed that only small fractions of amide protons were protected in R- or S-fibrils, an argument for the dynamic nature of their cross-beta-structure. Despite this fact, both amyloid states were found to be very stable conformationally as judged from temperature-induced denaturation monitored by FTIR and the conformation-sensitive dye. Upon heating to 80 degrees C, only local unfolding was revealed, while individual state-specific cross-beta features were preserved. The current studies demonstrated that the two amyloid states formed by the same amino acid sequence exhibited significantly different folding patterns that presumably reflect two different architectures of cross-beta-structure. Both S- and R-fibrils, however, shared high conformational stability, arguing that the energy landscape for protein folding and aggregation can contain several deep free-energy minima.


Journal of Biological Chemistry | 2009

Conformational Switching within Individual Amyloid Fibrils

Natallia Makarava; Valeriy G. Ostapchenko; Regina Savtchenko; Ilia V. Baskakov

A key structural component of amyloid fibrils is a highly ordered, crystalline-like cross-β-sheet core. Conformationally different amyloid structures can be formed within the same amino acid sequence. It is generally assumed that individual fibrils consist of conformationally uniform cross-β-structures. Using mammalian recombinant prion protein (PrP), we showed that, contrary to common perception, amyloid is capable of accommodating a significant conformational switching within individual fibrils. The conformational switch occurred when the amino acid sequence of a PrP variant used as a precursor substrate in a fibrillation reaction was not compatible with the strain-specific conformation of the fibrillar template. Despite the mismatch in amino acid sequences between the substrate and template, individual fibrils recruited the heterologous PrP variant; however, the fibril elongation proceeded through a conformational adaptation, resulting in a change in amyloid strain within individual fibrils. This study illustrates the high adaptation potential of amyloid structures and suggests that conformational switching within individual fibrils may account for adaptation of amyloid strains to a heterologous substrate. This work proposes a new mechanistic explanation for the phenomenon of strain conversion and illustrates the direction in evolution of amyloid structures. This study also provides a direct illustration that catalytic activity of self-replicating amyloid structures is not ultimately coupled with their templating effect.


Biochemistry | 2011

Relationship between conformational stability and amplification efficiency of prions

Nuria Gonzalez-Montalban; Natallia Makarava; Regina Savtchenko; Ilia V. Baskakov

Recent studies demonstrated that the efficiency, rate, and yield of prion amplification in vitro could be substantially improved by supplementing protein misfolding cyclic amplification (PMCA) with Teflon beads [Gonzalez-Montalban et al. (2011) PLoS Pathog. 7, e1001277]. Here we employed the new PMCA format with beads (PMCAb) to gain insight into the mechanism of prion amplification. Using a panel of six hamster prion strains, the effect of beads on amplification was found to be strain-specific, with the largest improvements in efficiency observed for strains with the highest conformational stability. This result suggests a link between PrP(Sc) conformational stability and its fragmentation rate and that beads improved amplification by assisting fragmentation. Furthermore, while exploring the PrP(Sc)-independent bead effect mechanism, a synergy between the effects of RNA and beads on amplification was observed. Consistent with previous studies, amplification of all six hamster strains tested here was found to be RNA-dependent. Under sonication conditions used for PMCA, large RNA molecules were found to degrade into smaller fragments of a size that was previously shown to be the most effective in facilitating prion conversion. We speculate that sonication-induced changes in RNA size distribution could be one of the rate-limiting steps in prion amplification.


Journal of Biological Chemistry | 2012

Stabilization of a Prion Strain of Synthetic Origin Requires Multiple Serial Passages

Natallia Makarava; Gabor G. Kovacs; Regina Savtchenko; Irina Alexeeva; Herbert Budka; Robert G. Rohwer; Ilia V. Baskakov

Background: Strain adaptation accompanies cross-species transmission of prions. Results: Adaptation of a strain of synthetic origin was observed within the same host species. Conclusion: When induced by recombinant PrP fibrils, PrPSc properties evolve over multiple serial passages within the same host. Significance: The phenomenon of prion strain adaptation is more common than generally thought. Transmission of prions to a new host is frequently accompanied by strain adaptation, a phenomenon that involves reduction of the incubation period, a change in neuropathological features and, sometimes, tissue tropism. Here we show that a strain of synthetic origin (SSLOW), although serially transmitted within the same species, displayed the key attributes of the strain adaptation process. At least four serial passages were required to stabilize the strain-specific SSLOW phenotype. The biological titration of SSLOW revealed a correlation between clinical signs and accumulation of PrPSc in brains of animals inoculated with high doses (10−1-10−5 diluted brain material), but dissociation between the two processes at low dose inocula (10−6-10−8 diluted brain material). At low doses, several asymptomatic animals harbored large amounts of PrPSc comparable with those seen in the brains of terminally ill animals, whereas one clinically ill animal had very little, if any, PrPSc. In summary, the current study illustrates that the phenomenon of prion strain adaptation is more common than generally thought and could be observed upon serial transmission without changing the host species. When PrPSc is seeded by recombinant PrP structures different from that of authentic PrPSc, PrPSc properties continued to evolve for as long as four serial passages.


PLOS Pathogens | 2014

Sialylation of Prion Protein Controls the Rate of Prion Amplification, the Cross-Species Barrier, the Ratio of PrPSc Glycoform and Prion Infectivity

Elizaveta Katorcha; Natallia Makarava; Regina Savtchenko; Alessandra d’Azzo; Ilia V. Baskakov

The central event underlying prion diseases involves conformational change of the cellular form of the prion protein (PrPC) into the disease-associated, transmissible form (PrPSc). PrPC is a sialoglycoprotein that contains two conserved N-glycosylation sites. Among the key parameters that control prion replication identified over the years are amino acid sequence of host PrPC and the strain-specific structure of PrPSc. The current work highlights the previously unappreciated role of sialylation of PrPC glycans in prion pathogenesis, including its role in controlling prion replication rate, infectivity, cross-species barrier and PrPSc glycoform ratio. The current study demonstrates that undersialylated PrPC is selected during prion amplification in Protein Misfolding Cyclic Amplification (PMCAb) at the expense of oversialylated PrPC. As a result, PMCAb-derived PrPSc was less sialylated than brain-derived PrPSc. A decrease in PrPSc sialylation correlated with a drop in infectivity of PMCAb-derived material. Nevertheless, enzymatic de-sialylation of PrPC using sialidase was found to increase the rate of PrPSc amplification in PMCAb from 10- to 10,000-fold in a strain-dependent manner. Moreover, de-sialylation of PrPC reduced or eliminated a species barrier of for prion amplification in PMCAb. These results suggest that the negative charge of sialic acid controls the energy barrier of homologous and heterologous prion replication. Surprisingly, the sialylation status of PrPC was also found to control PrPSc glycoform ratio. A decrease in PrPC sialylation levels resulted in a higher percentage of the diglycosylated glycoform in PrPSc. 2D analysis of charge distribution revealed that the sialylation status of brain-derived PrPC differed from that of spleen-derived PrPC. Knocking out lysosomal sialidase Neu1 did not change the sialylation status of brain-derived PrPC, suggesting that Neu1 is not responsible for desialylation of PrPC. The current work highlights previously unappreciated role of PrPC sialylation in prion diseases and opens multiple new research directions, including development of new therapeutic approaches.


The FASEB Journal | 2013

Changes in prion replication environment cause prion strain mutation

Nuria Gonzalez-Montalban; Young Jin Lee; Natallia Makarava; Regina Savtchenko; Ilia V. Baskakov

Interspecies prion transmission often leads to stable changes in physical and biological features of prion strains, a phenomenon referred to as a strain mutation. It remains unknown whether changes in the replication environment in the absence of changes in PrP primary structure can be a source of strain mutations. To approach this question, RNA content was altered in the course of amplification of hamster strains in serial protein misfolding cyclic amplification (sPMCAb). On adaptation to an RNA‐depleted environment and then readaptation to an environment containing RNA, strain 263K gave rise to a novel PrPSc conformation referred to as 263KR+, which is characterized by very low conformational stability, high sensitivity to proteolytic digestion, and a replication rate of 106‐fold/PMCAb round, which exceeded that of 263K by almost 104‐fold. A series of PMCAb experiments revealed that 263KR+ was lacking in brain‐derived 263K material, but emerged de novo as a result of changes in RNA content. A similar transformation was also observed for strain Hyper, suggesting that this phenomenon was not limited to 263K. The current work demonstrates that dramatic PrPSc transformations can be induced by changes in the prion replication environment and without changes in PrP primary structure.—Gonzalez‐Montalban, N., Jin Lee, Y., Makarava, N., Savtchenko, R., Baskakov, I. V., Changes in prion replication environment cause prion strain mutation. FASEB J. 27, 3702–3710 (2013). www.fasebj.org


Journal of Biological Chemistry | 2013

Selective Amplification of Classical and Atypical Prions Using Modified Protein Misfolding Cyclic Amplification

Natallia Makarava; Regina Savtchenko; Ilia V. Baskakov

Background: The mechanisms of prion strain mutation and its dependence on the environment are not known. Results: Glycosylation status of PrPC substrate and cofactors controls the selectivity of amplification of classical and atypical PrPSc. Conclusion: Amplification selectivity of alternative prion states can be regulated by modification of a substrate and cofactors in PMCA. Significance: Alternative prion states can be selectively amplified from a mixture. With the development of protein misfolding cyclic amplification (PMCA), the topic of faithful propagation of prion strain-specific structures has been constantly debated. Here we show that by subjecting brain material of a synthetic strain consisting of a mixture of self-replicating states to PMCAb, selective amplification of PrPSc could be achieved, and that PMCAb mimicked the evolutionary trend observed during serial transmission in animals. On the other hand, using modified PMCAb conditions that employ partially deglycosylated PrPC (dgPMCAb), an alternative transmissible state referred to as atypical protease-resistant form of the prion protein (atypical PrPres) was selectively amplified from a mixture. Surprisingly, when hamster-adapted strains (263K and Hyper) were subjected to dgPMCAb, their proteinase K digestion profile underwent a dramatic transformation, suggesting that a mixture of atypical PrPres and PrPSc might be present in brain-derived materials. However, detailed analysis revealed that the proteinase K-resistant profile of PrPSc changed in response to dgPMCAb. Despite these changes, the 263K strain-specific disease phenotype was preserved after passage through dgPMCAb. This study revealed that the change in PrPSc biochemical phenotype does not always represent an irreversible transformation of a strain, but rather demonstrated the existence of a wide range of variation for strain-specific physical features in response to a change in prion replication environment. The current work introduced a new PMCA technique for amplification of atypical PrPres and raised a number of questions about the need for a clever distinction between actual strain mutation and variation of strain-specific features in response to a change in the replication environment.

Collaboration


Dive into the Regina Savtchenko's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Saul Roseman

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gabor G. Kovacs

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandra d’Azzo

St. Jude Children's Research Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge