Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Regina Z. Cer is active.

Publication


Featured researches published by Regina Z. Cer.


Nucleic Acids Research | 2009

IC50-to-Ki: a web-based tool for converting IC50 to Ki values for inhibitors of enzyme activity and ligand binding

Regina Z. Cer; Uma Mudunuri; Robert M. Stephens; Frank J. Lebeda

A new web-server tool estimates Ki values from experimentally determined IC50 values for inhibitors of enzymes and of binding reactions between macromolecules (e.g. proteins, polynucleic acids) and ligands. This converter was developed to enable end users to help gauge the quality of the underlying assumptions used in these calculations which depend on the type of mechanism of inhibitor action and the concentrations of the interacting molecular species. Additional calculations are performed for nonclassical, tightly bound inhibitors of enzyme-substrate or of macromolecule-ligand systems in which free, rather than total concentrations of the reacting species are required. Required user-defined input values include the total enzyme (or another target molecule) and substrate (or ligand) concentrations, the Km of the enzyme-substrate (or the Kd of the target-ligand) reaction, and the IC50 value. Assumptions and caveats for these calculations are discussed along with examples taken from the literature. The host database for this converter contains kinetic constants and other data for inhibitors of the proteolytic clostridial neurotoxins (http://botdb.abcc.ncifcrf.gov/toxin/kiConverter.jsp).


Journal of Bacteriology | 2007

Complete Sequence Analysis of Novel Plasmids from Emetic and Periodontal Bacillus cereus Isolates Reveals a Common Evolutionary History among the B. cereus-Group Plasmids, Including Bacillus anthracis pXO1

David A. Rasko; M. J. Rosovitz; Ole Andreas Økstad; Derrick E. Fouts; Lingxia Jiang; Regina Z. Cer; Anne-Brit Kolstø; Steven R. Gill; Jacques Ravel

The plasmids of the members of the Bacillus cereus sensu lato group of organisms are essential in defining the phenotypic traits associated with pathogenesis and ecology. For example, Bacillus anthracis contains two plasmids, pXO1 and pXO2, encoding toxin production and encapsulation, respectively, that define this species pathogenic potential, whereas the presence of a Bt toxin-encoding plasmid defines Bacillus thuringiensis isolates. In this study the plasmids from B. cereus isolates that produce emetic toxin or are linked to periodontal disease were sequenced and analyzed. Two periodontal isolates examined contained almost identical approximately 272-kb plasmids, named pPER272. The emetic toxin-producing isolate contained one approximately 270-kb plasmid, named pCER270, encoding the cereulide biosynthesis gene cluster. Comparative sequence analyses of these B. cereus plasmids revealed a high degree of sequence similarity to the B. anthracis pXO1 plasmid, especially in a putative replication region. These plasmids form a newly defined group of pXO1-like plasmids. However, these novel plasmids do not contain the pXO1 pathogenicity island, which in each instance is replaced by plasmid specific DNA. Plasmids pCER270 and pPER272 share regions that are not found in any other pXO1-like plasmids. Evolutionary studies suggest that these plasmids are more closely related to each other than to other identified B. cereus plasmids. Screening of a population of B. cereus group isolates revealed that pXO1-like plasmids are more often found in association with clinical isolates. This study demonstrates that the pXO1-like plasmids may define pathogenic B. cereus isolates in the same way that pXO1 and pXO2 define the B. anthracis species.


Journal of Bacteriology | 2006

Sequencing Bacillus anthracis Typing Phages Gamma and Cherry Reveals a Common Ancestry

Derrick E. Fouts; David A. Rasko; Regina Z. Cer; Lingxia Jiang; Nadia Fedorova; Alla Shvartsbeyn; Jessica Vamathevan; Luke J. Tallon; Ryan Althoff; Tamara S. Arbogast; Douglas W. Fadrosh; Timothy D. Read; Steven R. Gill

The genetic relatedness of the Bacillus anthracis typing phages Gamma and Cherry was determined by nucleotide sequencing and comparative analysis. The genomes of these two phages were identical except at three variable loci, which showed heterogeneity within individual lysates and among Cherry, Wbeta, Fah, and four Gamma bacteriophage sequences.


Nucleic Acids Research | 2012

Non-B DB v2.0: a database of predicted non-B DNA-forming motifs and its associated tools

Regina Z. Cer; Duncan E. Donohue; Uma Mudunuri; Nuri A. Temiz; Michael A. Loss; Nathan J. Starner; Goran N. Halusa; Natalia Volfovsky; Ming Yi; Brian T. Luke; Albino Bacolla; Jack R. Collins; Robert M. Stephens

The non-B DB, available at http://nonb.abcc.ncifcrf.gov, catalogs predicted non-B DNA-forming sequence motifs, including Z-DNA, G-quadruplex, A-phased repeats, inverted repeats, mirror repeats, direct repeats and their corresponding subsets: cruciforms, triplexes and slipped structures, in several genomes. Version 2.0 of the database revises and re-implements the motif discovery algorithms to better align with accepted definitions and thresholds for motifs, expands the non-B DNA-forming motifs coverage by including short tandem repeats and adds key visualization tools to compare motif locations relative to other genomic annotations. Non-B DB v2.0 extends the ability for comparative genomics by including re-annotation of the five organisms reported in non-B DB v1.0, human, chimpanzee, dog, macaque and mouse, and adds seven additional organisms: orangutan, rat, cow, pig, horse, platypus and Arabidopsis thaliana. Additionally, the non-B DB v2.0 provides an overall improved graphical user interface and faster query performance.


Journal of Biological Chemistry | 2011

Non-B DNA-forming Sequences and WRN Deficiency Independently Increase the Frequency of Base Substitution in Human Cells

Albino Bacolla; Guliang Wang; Aklank Jain; Nadia Chuzhanova; Regina Z. Cer; Jack R. Collins; David Neil Cooper; Vilhelm A. Bohr; Karen M. Vasquez

Although alternative DNA secondary structures (non-B DNA) can induce genomic rearrangements, their associated mutational spectra remain largely unknown. The helicase activity of WRN, which is absent in the human progeroid Werner syndrome, is thought to counteract this genomic instability. We determined non-B DNA-induced mutation frequencies and spectra in human U2OS osteosarcoma cells and assessed the role of WRN in isogenic knockdown (WRN-KD) cells using a supF gene mutation reporter system flanked by triplex- or Z-DNA-forming sequences. Although both non-B DNA and WRN-KD served to increase the mutation frequency, the increase afforded by WRN-KD was independent of DNA structure despite the fact that purified WRN helicase was found to resolve these structures in vitro. In U2OS cells, ∼70% of mutations comprised single-base substitutions, mostly at G·C base-pairs, with the remaining ∼30% being microdeletions. The number of mutations at G·C base-pairs in the context of NGNN/NNCN sequences correlated well with predicted free energies of base stacking and ionization potentials, suggesting a possible origin via oxidation reactions involving electron loss and subsequent electron transfer (hole migration) between neighboring bases. A set of ∼40,000 somatic mutations at G·C base pairs identified in a lung cancer genome exhibited similar correlations, implying that hole migration may also be involved. We conclude that alternative DNA conformations, WRN deficiency and lung tumorigenesis may all serve to increase the mutation rate by promoting, through diverse pathways, oxidation reactions that perturb the electron orbitals of neighboring bases. It follows that such “hole migration” is likely to play a much more widespread role in mutagenesis than previously anticipated.


PLOS Genetics | 2013

Guanine Holes Are Prominent Targets for Mutation in Cancer and Inherited Disease

Albino Bacolla; Nuri A. Temiz; Ming Yi; Joseph Ivanic; Regina Z. Cer; Duncan E. Donohue; Edward V. Ball; Uma Mudunuri; Guliang Wang; Aklank Jain; Natalia Volfovsky; Brian T. Luke; Robert M. Stephens; David Neil Cooper; Jack R. Collins; Karen M. Vasquez

Single base substitutions constitute the most frequent type of human gene mutation and are a leading cause of cancer and inherited disease. These alterations occur non-randomly in DNA, being strongly influenced by the local nucleotide sequence context. However, the molecular mechanisms underlying such sequence context-dependent mutagenesis are not fully understood. Using bioinformatics, computational and molecular modeling analyses, we have determined the frequencies of mutation at G•C bp in the context of all 64 5′-NGNN-3′ motifs that contain the mutation at the second position. Twenty-four datasets were employed, comprising >530,000 somatic single base substitutions from 21 cancer genomes, >77,000 germline single-base substitutions causing or associated with human inherited disease and 16.7 million benign germline single-nucleotide variants. In several cancer types, the number of mutated motifs correlated both with the free energies of base stacking and the energies required for abstracting an electron from the target guanines (ionization potentials). Similar correlations were also evident for the pathological missense and nonsense germline mutations, but only when the target guanines were located on the non-transcribed DNA strand. Likewise, pathogenic splicing mutations predominantly affected positions in which a purine was located on the non-transcribed DNA strand. Novel candidate driver mutations and tissue-specific mutational patterns were also identified in the cancer datasets. We conclude that electron transfer reactions within the DNA molecule contribute to sequence context-dependent mutagenesis, involving both somatic driver and passenger mutations in cancer, as well as germline alterations causing or associated with inherited disease.


Expert Review of Neurotherapeutics | 2010

Temporal characteristics of botulinum neurotoxin therapy.

Frank J. Lebeda; Regina Z. Cer; Robert M. Stephens; Uma Mudunuri

Botulinum neurotoxin is a pharmaceutical treatment used for an increasing number of neurological and non-neurological indications, symptoms and diseases. Despite the wealth of clinical reports that involve the timing of the therapeutic effects of this toxin, few studies have attempted to integrate these data into unified models. Secondary reactions have also been examined including the development of adverse events, resistance to repeated applications, and nerve terminal sprouting. Our primary intent for conducting this review was to gather relevant pharmacodynamic data from suitable biomedical literature regarding botulinum neurotoxins via the use of automated data-mining techniques. We envision that mathematical models will ultimately be of value to those who are healthcare decision makers and providers, as well as clinical and basic researchers. Furthermore, we hypothesize that the combination of this computer-intensive approach with mathematical modeling will predict the percentage of patients who will favorably or adversely respond to this treatment and thus will eventually assist in developing the increasingly important area of personalized medicine.


Current protocols in human genetics | 2012

Searching for Non‐B DNA‐Forming Motifs Using nBMST (Non‐B DNA Motif Search Tool)

Regina Z. Cer; K. H. Bruce; Duncan E. Donohue; Nuri A. Temiz; Uma Mudunuri; Ming Yi; Natalia Volfovsky; Albino Bacolla; Brian T. Luke; Jack R. Collins; Robert M. Stephens

This unit describes basic protocols on using the non‐B DNA Motif Search Tool (nBMST) to search for sequence motifs predicted to form alternative DNA conformations that differ from the canonical right‐handed Watson‐Crick double‐helix, collectively known as non‐B DNA, and on using the associated PolyBrowse, a GBrowse–based genomic browser. The nBMST is a Web‐based resource that allows users to submit one or more DNA sequences to search for inverted repeats (cruciform DNA), mirror repeats (triplex DNA), direct/tandem repeats (slipped/hairpin structures), G4 motifs (tetraplex, G‐quadruplex DNA), alternating purine‐pyrimidine tracts (left‐handed Z‐DNA), and A‐phased repeats (static bending). The nBMST is versatile, simple to use, does not require bioinformatics skills, and can be applied to any type of DNA sequences, including viral and bacterial genomes, up to an aggregate of 20 megabasepairs (Mbp). Curr. Protoc. Hum. Genet. 73:18.7.1‐18.7.22.


Genome Biology | 2011

Introducing the non-B DNA Motif Search Tool (nBMST).

Regina Z. Cer; Kevin H Bruce; Duncan E. Donohue; Alpay N Temiz; Albino Bacolla; Uma Mudunuri; Ming Yi; Natalia Volfovsky; Brian T. Luke; Jack R. Collins; Robert M. Stephens

DNA sequence motifs with the ability to form non-B (non-canonical) structures have been linked to a variety of regulatory and pathological processes. Although the exact mechanism is unknown, recent work has provided significant evidence that non-B DNA structures may play a role in DNA instability and mutagenesis, leading to both DNA rearrangements and increased mutational rates, which are hallmarks of cancer. We have developed algorithms to identify a wide variety of non-B-DNA-forming motifs, including G-quadruplex-forming repeats, direct repeats and slipped motifs, inverted repeats and cruciform motifs, mirror repeats and triplex motifs, and A-phased repeats. After identifying these motifs in the mammalian reference genomes of human, mouse, chimpanzee, macaque, cow, dog, rat and platypus, the data were made publicly available in non-B DB [1]. However, it soon became apparent that it was not feasible to annotate the ever-growing list of genomic data and that it would be more effective to provide researchers with a systematic tool to predict these motifs in their own genomic data. Thus, the non-B DNA Motif Search Tool (nBMST) was created, and it is freely available online [2]. nBMST is a web interface that enables researchers to interactively submit any DNA sequence for searching for non-B DNA motifs. Once a user submits one or more DNA sequences in FASTA format, nBMST returns a comprehensive results page that contains the following: downloadable files in both a tab-delimited format and a generic feature format (GFF); a visualization, including PNG images; and a dynamic genome browser created using the Generic Genome Browser (GBrowse) [3] (version 2.0). Currently, nBMST allows file sizes of up to 20 MB of DNA sequence to be uploaded and stores the results for registered users for up to six months. In summary, the purpose of nBMST is to help provide insight into the involvement of alternative DNA conformations in cancer and other diseases, as well as into other potential biological functions.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Identification of anthrax toxin genes in a Bacillus cereus associated with an illness resembling inhalation anthrax

Alex R. Hoffmaster; Jacques Ravel; David A. Rasko; Gail D. Chapman; Michael D. Chute; Chung K. Marston; Barun K. De; Claudio Tavares Sacchi; Collette Fitzgerald; Leonard W. Mayer; Martin C. J. Maiden; Fergus G. Priest; Margaret Barker; Lingxia Jiang; Regina Z. Cer; Jennifer Rilstone; Scott N. Peterson; Robbin S. Weyant; Darrell R Galloway; Timothy D. Read; Tanja Popovic; Claire M. Fraser

Collaboration


Dive into the Regina Z. Cer's collaboration.

Top Co-Authors

Avatar

Albino Bacolla

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Jack R. Collins

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Uma Mudunuri

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Duncan E. Donohue

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Ming Yi

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar

Karen M. Vasquez

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Natalia Volfovsky

Science Applications International Corporation

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge