Reginald O. Morgan
University of Oviedo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Reginald O. Morgan.
American Journal of Pathology | 2004
Juana García Pedrero; M. Pilar Fernandez; Reginald O. Morgan; Agustín Herrero Zapatero; María González; Carlos Suárez Nieto; Juan P. Rodrigo
Annexin A1 (ANXA1) protein expression was evaluated by Western blot in a series of 32 head and neck squamous cell carcinomas (HNSCCs) in a search for molecular alterations that could serve as useful diagnostic/prognostic markers. ANXA1 down-regulation was observed in 24 cases (75%) compared with patient-matched normal epithelium. In relation to clinicopathological variables, ANXA1 down-regulation was significantly associated with advanced T stages (P = 0.029), locoregional lymph node metastases (P = 0.038), advanced disease stage (P = 0.006), hypopharyngeal localization (P = 0.038), and poor histological differentiation (P = 0.005). ANXA1 expression was also analyzed by immunohistochemistry in paraffin-embedded sections from 22 of 32 HNSCCs and 8 premalignant lesions. All dysplastic tissues showed significantly reduced ANXA1 expression compared to a strong positive signal observed in adjacent normal epithelia (except basal and suprabasal cells). A close association was observed between ANXA1 expression and the histological grade in HNSCC. Well-differentiated tumors presented a positive ANXA1 signal in highly keratinized areas whereas moderately and poorly differentiated tumors exhibited very weak or negative staining. Our findings clearly identify ANXA1 as an effective differentiation marker for the histopathological grading of HNSCCs and for the detection of epithelial dysplasia.
Brain | 2010
Christoph S. Clemen; Karthikeyan Tangavelou; Karl-Heinz Strucksberg; Steffen Just; Linda Gaertner; Hanna Regus-Leidig; Maria Stumpf; Jens Reimann; Roland Coras; Reginald O. Morgan; Maria-Pilar Fernandez; Andreas Hofmann; Stefan Müller; Benedikt Schoser; Franz-Georg Hanisch; Wolfgang Rottbauer; Ingmar Blümcke; Stephan von Hörsten; Ludwig Eichinger; Rolf Schröder
Mutations of the human valosin-containing protein gene cause autosomal-dominant inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia. We identified strumpellin as a novel valosin-containing protein binding partner. Strumpellin mutations have been shown to cause hereditary spastic paraplegia. We demonstrate that strumpellin is a ubiquitously expressed protein present in cytosolic and endoplasmic reticulum cell fractions. Overexpression or ablation of wild-type strumpellin caused significantly reduced wound closure velocities in wound healing assays, whereas overexpression of the disease-causing strumpellin N471D mutant showed no functional effect. Strumpellin knockdown experiments in human neuroblastoma cells resulted in a dramatic reduction of axonal outgrowth. Knockdown studies in zebrafish revealed severe cardiac contractile dysfunction, tail curvature and impaired motility. The latter phenotype is due to a loss of central and peripheral motoneuron formation. These data imply a strumpellin loss-of-function pathogenesis in hereditary spastic paraplegia. In the human central nervous system strumpellin shows a presynaptic localization. We further identified strumpellin in pathological protein aggregates in inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia, various myofibrillar myopathies and in cortical neurons of a Huntingtons disease mouse model. Beyond hereditary spastic paraplegia, our findings imply that mutant forms of strumpellin and valosin-containing protein may have a concerted pathogenic role in various protein aggregate diseases.
Cancer Letters | 2008
Emma Pena-Alonso; Juan P. Rodrigo; Iñigo Casafont Parra; Juana García Pedrero; María Victoria González Meana; Carlos Suárez Nieto; Manuel F. Fresno; Reginald O. Morgan; M. Pilar Fernandez
Annexin A2 is a highly expressed gene with important roles in cell membrane physiology and is frequently dysregulated in cancer. The objective of this study was to determine the pattern of expression and prognostic significance of annexin A2 protein in head and neck squamous cell carcinoma. We assessed both quantitative changes and qualitative distribution of annexin A2 mRNA and protein expression in normal and diseased tissues by immunohistochemistry, immunofluorescence and in situ hybridization. Annexin A2 expression was confined to the basal and suprabasal cells of normal epithelium and the protein cellular location was consistently observed at the cell membrane. Expression levels correlated with histopathological grade, showing significant suppression in moderately and poorly differentiated tumours. We conclude that annexin A2 exhibits a characteristic pattern of expression, distinct from other annexins and suggestive of a cell-specific functional role. The marked reduction of annexin A2 in poorly differentiated tumours and dysplastic tissue is expected to result in a loss of function aimed at the coordination of membrane signalling enzyme complexes, actin polymerization and extracellular matrix proteolysis. The phenotypic consequences may become manifest in an alteration of epithelial tissue growth and remodelling with secondary influence on tumour development, progression and metastasis.
American Journal of Rhinology | 2005
Juan P. Rodrigo; Juana M. García-Pedrero; M. Pilar Fernandez; Reginald O. Morgan; Carlos Suárez; Agustin Herrero
Background Alterations of annexin A1 (ANXA1) expression have been reported in various cancers. However, no data are available about the expression of this protein in nasopharyngeal carcinomas (NPCs). The objective of this study was to investigate the expression of ANXA1 in these tumors. Methods We examined noncancerous nasopharyngeal mucosa (4 cases) and NPC (20 cases) for ANXA1 expression using immunohistochemistry. Results All tumor tissues showed markedly reduced ANXA1 expression compared with a strong positive signal observed in the corresponding normal epithelia. We found that ANXA1 expression is associated with the histological type in NPC. Only squamous cell carcinomas presented a positive ANXA1 signal in differentiated areas whereas all poorly differentiated tumors exhibited negative staining. Conclusion Our data show for the first time that ANXA1 expression is down-regulated in NPC and that its expression seems to be related with the squamous differentiation status of these tumors.
Sub-cellular biochemistry | 2008
Charles-Peter Xavier; Ludwig Eichinger; M. Pilar Fernandez; Reginald O. Morgan; Christoph S. Clemen
This chapter discusses various aspects of coronin phylogeny, structure and function that are of specific interest. Two subfamilies of ancient coronins of unicellular pathogens such as Entamoeba, Trypanosoma, Leishmania and Acanthamoeba as well as of Plasmodium, Babesia, and Trichomonas are presented in the first two sections. Their coronins generally bind to F-actin and apparently are involved in proliferation, locomotion and phagocytosis. However, there are so far no studies addressing a putative role of coronin in the virulence of these pathogens. The following section delineates genetic anomalies like the chimeric coronin-fusion products with pelckstrin homology and gelsolin domains that are found in amoeba. Moreover, most nonvertebrate metazoa appear to encode CRN8, CRN9 and CRN7 representatives (for these coronin symbols see Chapter 2), but in e.g., Drosophila melanogaster and Caenorhabditis elegans a CRN9 is missing. The forth section deals with the evolutionary expansion of vertebrate coronins. Experimental data on the F-actin binding CRN2 of Xenopus (Xcoronin) including a Cdc42/Rac interactive binding (CRIB) motif that is also present in other members of the coronin protein family are discussed. Xenopus laevis represents a case for the expansion of the seven vertebrate coronins due to tetraploidization events. Other examples for a change in the number of coronin paralogs are zebrafish and birds, but (coronin) gene duplication events also occurred in unicellular protozoa. The fifth section of this chapter briefly summarizes three different cellular processes in which CRN4/CORO1A is involved, namely actin-binding, superoxide generation and Ca(2+)-signaling and refers to the largely unexplored mammalian coronins CRN5/CORO2A and CRN6/CORO2B, the latter binding to vinculin. The final section discusses how, by unveiling the aspects of coronin function in organisms reported so far, one can trace a remarkable evolution and diversity in their individual roles anticipating a rather complex and intricate involvement of coronins in a variety of cellular processes.
FEBS Letters | 1998
Reginald O. Morgan; Maria-Pilar Fernandez
Systematic analysis of expressed sequence tags in dbEST yielded an expression profile of the ten known human annexins and led to the discovery of a novel subfamily expressed mainly in differentiating tissues. Full‐length cDNAs encoded a 338‐amino acid protein with less than 40% identity to other annexins, an atypical amino acid composition, and an insertion and deletion in internal repeat 3. The most striking feature was a complete ablation of all four type II calcium‐binding sites in the conserved tetrad core. Annexin 31 thus constitutes a unique, natural probe for investigating the role of membrane binding in annexin function.
Biochemical Journal | 2003
Emilio Lecona; Javier Turnay; Nieves Olmo; Ana Guzman-Aranguez; Reginald O. Morgan; Maria-Pilar Fernandez; Ma Antonia Lizarbe
Annexin A11 is one of the 12 vertebrate subfamilies in the annexin superfamily of calcium/phospholipid-binding proteins, distinguishable by long, non-homologous N-termini rich in proline, glycine and tyrosine residues. As there is negligible structural information concerning this annexin subfamily apart from primary sequence data, we have cloned, expressed and purified recombinant mouse annexin A11 to investigate its structural and functional properties. CD spectroscopy reveals two main secondary-structure contributions, alpha-helix and random coil (approx. 30% each), corresponding mainly to the annexin C-terminal tetrad and the N-terminus respectively. On calcium binding, an increase in alpha-helix and a decrease in random coil are detected. Fluorescence spectroscopy reveals that its only tryptophan residue, located at the N-terminus, is completely exposed to the solvent; calcium binding promotes a change in tertiary structure, which does not affect this tryptophan residue but involves the movement of approximately four tyrosine residues to a more hydrophobic environment. These calcium-induced structural changes produce a significant thermal stabilization, with an increase of approx. 14 degrees C in the melting temperature. Annexin A11 binds to acidic phospholipids and to phosphatidylethanolamine in the presence of calcium; weaker calcium-independent binding to phosphatidylserine, phosphatidic acid and phosphatidylethanolamine was also observed. The calcium-dependent binding to phosphatidylserine is accompanied by an increase in alpha-helix and a decrease in random-coil contents, with translocation of the tryptophan residue towards a more hydrophobic environment. This protein induces vesicle aggregation but requires non-physiological calcium concentrations in vitro. A three-dimensional model, consistent with these data, was generated to conceptualize annexin A11 structure-function relationships.
Scientific Reports | 2012
Charles-Peter Xavier; Raphael H. Rastetter; Margit Blömacher; Maria Stumpf; Mirko Himmel; Reginald O. Morgan; Maria-Pilar Fernandez; Conan K. Wang; Asiah Osman; Yoshihiko Miyata; Ruth A. Gjerset; Ludwig Eichinger; Andreas Hofmann; Stefan Linder; Angelika A. Noegel; Christoph S. Clemen
CRN2 (synonyms: coronin 1C, coronin 3) functions in the re-organization of the actin network and is implicated in cellular processes like protrusion formation, secretion, migration and invasion. We demonstrate that CRN2 is a binding partner and substrate of protein kinase CK2, which phosphorylates CRN2 at S463 in its C-terminal coiled coil domain. Phosphomimetic S463D CRN2 loses the wild-type CRN2 ability to inhibit actin polymerization, to bundle F-actin, and to bind to the Arp2/3 complex. As a consequence, S463D mutant CRN2 changes the morphology of the F-actin network in the front of lamellipodia. Our data imply that CK2-dependent phosphorylation of CRN2 is involved in the modulation of the local morphology of complex actin structures and thereby inhibits cell migration.
Plant Science | 2014
Greg Clark; Reginald O. Morgan; Maria Pilar Fernandez; Mari L. Salmi; Stanley J. Roux
Animal and plant cells release nucleotides into their extracellular matrix when touched, wounded, and when their plasma membranes are stretched during delivery of secretory vesicles and growth. These released nucleotides then function as signaling agents that induce rapid increases in the concentration of cytosolic calcium, nitric oxide and superoxide. These, in turn, are transduced into downstream physiological changes. These changes in plants include changes in the growth of diverse tissues, in gravitropism, and in the opening and closing of stomates. The concentration of extracellular nucleotides is controlled by various phosphatases, prominent among which are apyrases EC 3.6.1.5 (nucleoside triphosphate diphosphohydrolases, NTPDases). This review provides phylogenetic and pHMM analyses of plant apyrases as well as analysis of predicted post-translational modifications for Arabidopsis apyrases. This review also summarizes and discusses recent advances in research on the roles of apyrases and extracellular nucleotides in controlling plant growth and development. These include new findings that document how apyrases and extracellular nucleotides control auxin transport, modulate stomatal aperture, and mediate biotic and abiotic stress responses, and on how apyrase suppression leads to growth inhibition.
BMC Genomics | 2016
Frederik Sündermann; Maria-Pilar Fernandez; Reginald O. Morgan
BackgroundThe microtubule associated protein Tau (MAPT) promotes assembly and interaction of microtubules with the cytoskeleton, impinging on axonal transport and synaptic plasticity. Its neuronal expression and intrinsic disorder implicate it in some 30 tauopathies such as Alzheimer’s disease and frontotemporal dementia. These pathophysiological studies have yet to be complemented by computational analyses of its molecular evolution and structural models of all its functional domains to explain the molecular basis for its conservation profile, its site-specific interactions and the propensity to conformational disorder and aggregate formation.ResultsWe systematically annotated public sequence data to reconstruct unspliced MAPT, MAP2 and MAP4 transcripts spanning all represented genomes. Bayesian and maximum likelihood phylogenetic analyses, genetic linkage maps and domain architectures distinguished a nonvertebrate outgroup from the emergence of MAP4 and its subsequent ancestral duplication to MAP2 and MAPT. These events were coupled to other linked genes such as KANSL1L and KANSL and may thus be consequent to large-scale chromosomal duplications originating in the extant vertebrate genomes of hagfish and lamprey. Profile hidden Markov models (pHMMs), clustered subalignments and 3D structural predictions defined potential interaction motifs and specificity determining sites to reveal distinct signatures between the four homologous microtubule binding domains and independent divergence of the amino terminus.ConclusionThese analyses clarified ambiguities of MAPT nomenclature, defined the order, timing and pattern of its molecular evolution and identified key residues and motifs relevant to its protein interaction properties and pathogenic role. Additional unexpected findings included the expansion of cysteine-containing, microtubule binding domains of MAPT in cold adapted Antarctic icefish and the emergence of a novel multiexonic saitohin (STH) gene from repetitive elements in MAPT intron 11 of certain primate genomes.