Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Regine Heller is active.

Publication


Featured researches published by Regine Heller.


Nature | 2008

Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels

Dieter Wicher; Ronny Schäfer; René Bauernfeind; Marcus C. Stensmyr; Regine Heller; Stefan H. Heinemann; Bill S. Hansson

From worm to man, many odorant signals are perceived by the binding of volatile ligands to odorant receptors that belong to the G-protein-coupled receptor (GPCR) family. They couple to heterotrimeric G-proteins, most of which induce cAMP production. This second messenger then activates cyclic-nucleotide-gated ion channels to depolarize the olfactory receptor neuron, thus providing a signal for further neuronal processing. Recent findings, however, have challenged this concept of odorant signal transduction in insects, because their odorant receptors, which lack any sequence similarity to other GPCRs, are composed of conventional odorant receptors (for example, Or22a), dimerized with a ubiquitously expressed chaperone protein, such as Or83b in Drosophila. Or83b has a structure akin to GPCRs, but has an inverted orientation in the plasma membrane. However, G proteins are expressed in insect olfactory receptor neurons, and olfactory perception is modified by mutations affecting the cAMP transduction pathway. Here we show that application of odorants to mammalian cells co-expressing Or22a and Or83b results in non-selective cation currents activated by means of an ionotropic and a metabotropic pathway, and a subsequent increase in the intracellular Ca2+ concentration. Expression of Or83b alone leads to functional ion channels not directly responding to odorants, but being directly activated by intracellular cAMP or cGMP. Insect odorant receptors thus form ligand-gated channels as well as complexes of odorant-sensing units and cyclic-nucleotide-activated non-selective cation channels. Thereby, they provide rapid and transient as well as sensitive and prolonged odorant signalling.


Journal of Biological Chemistry | 2001

l-Ascorbic Acid Potentiates Endothelial Nitric Oxide Synthesis via a Chemical Stabilization of Tetrahydrobiopterin

Regine Heller; Anett Unbehaun; Berit Schellenberg; Bernd Mayer; Gabriele Werner-Felmayer; Ernst R. Werner

Ascorbic acid has been shown to stimulate endothelial nitric oxide (NO) synthesis in a time- and concentration-dependent fashion without affecting NO synthase (NOS) expression or l-arginine uptake. The present study investigates if the underlying mechanism is related to the NOS cofactor tetrahydrobiopterin. Pretreatment of human umbilical vein endothelial cells with ascorbate (1 μm to 1 mm, 24 h) led to an up to 3-fold increase of intracellular tetrahydrobiopterin levels that was concentration-dependent and saturable at 100 μm. Accordingly, the effect of ascorbic acid on Ca2+-dependent formation of citrulline (co-product of NO) and cGMP (product of the NO-activated soluble guanylate cyclase) was abolished when intracellular tetrahydrobiopterin levels were increased by coincubation of endothelial cells with sepiapterin (0.001–100 μm, 24 h). In contrast, ascorbic acid did not modify the pterin affinity of endothelial NOS, which was measured in assays with purified tetrahydrobiopterin-free enzyme. The ascorbate-induced increase of endothelial tetrahydrobiopterin was not due to an enhanced synthesis of the compound. Neither the mRNA expression of the rate-limiting enzyme in tetrahydrobiopterin biosynthesis, GTP cyclohydrolase I, nor the activities of either GTP cyclohydrolase I or 6-pyruvoyl-tetrahydropterin synthase, the second enzyme in the de novo synthesis pathway, were altered by ascorbate. Our data demonstrate that ascorbic acid leads to a chemical stabilization of tetrahydrobiopterin. This was evident as an increase in the half-life of tetrahydrobiopterin in aqueous solution. Furthermore, the increase of tetrahydrobiopterin levels in intact endothelial cells coincubated with cytokines and ascorbate was associated with a decrease of more oxidized biopterin derivatives (7,8-dihydrobiopterin and biopterin) in cells and cell supernatants. The present study suggests that saturated ascorbic acid levels in endothelial cells are necessary to protect tetrahydrobiopterin from oxidation and to provide optimal conditions for cellular NO synthesis.


Journal of Biological Chemistry | 1999

l-Ascorbic Acid Potentiates Nitric Oxide Synthesis in Endothelial Cells

Regine Heller; Felix Münscher-Paulig; Rolf Gräbner; Uwe Till

Ascorbic acid has been shown to enhance impaired endothelium-dependent vasodilation in patients with atherosclerosis by a mechanism that is thought to involve protection of nitric oxide (NO) from inactivation by free oxygen radicals. The present study in human endothelial cells from umbilical veins and coronary arteries investigates whether l-ascorbic acid additionally affects cellular NO synthesis. Endothelial cells were incubated for 24 h with 0.1–100 μm ascorbic acid and were subsequently stimulated for 15 min with ionomycin (2 μm) or thrombin (1 unit/ml) in the absence of extracellular ascorbate. Ascorbate pretreatment led to a 3-fold increase of the cellular production of NO measured as the formation of its co-product citrulline and as the accumulation of its effector molecule cGMP. The effect was saturated at 100 μm and followed a similar kinetics as seen for the uptake of ascorbate into the cells. The investigation of the precursor moleculel-gulonolactone and of different ascorbic acid derivatives suggests that the enediol structure of ascorbate is essential for its effect on NO synthesis. Ascorbic acid did not induce the expression of the NO synthase (NOS) protein nor enhance the uptake of the NOS substrate l-arginine into endothelial cells. The ascorbic acid effect was minimal when the citrulline formation was measured in cell lysates from ascorbate-pretreated cells in the presence of known cofactors for NOS activity. However, when the cofactor tetrahydrobiopterin was omitted from the assay, a similar potentiating effect of ascorbate pretreatment as seen in intact cells was demonstrated, suggesting that ascorbic acid may either enhance the availability of tetrahydrobiopterin or increase its affinity for the endothelial NOS. Our data suggest that intracellular ascorbic acid enhances NO synthesis in endothelial cells and that this may explain, in part, the beneficial vascular effects of ascorbic acid.


Molecular and Cellular Biology | 2006

Thrombin Activates AMP-Activated Protein Kinase in Endothelial Cells via a Pathway Involving Ca2+/Calmodulin-Dependent Protein Kinase Kinase β

Nadine Stahmann; Angela Woods; David Carling; Regine Heller

ABSTRACT AMP-activated protein kinase (AMPK) is a sensor of cellular energy state in response to metabolic stress and other regulatory signals. AMPK is controlled by upstream kinases which have recently been identified as LKB1 or Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ). Our study of human endothelial cells shows that AMPK is activated by thrombin through a Ca2+-dependent mechanism involving the thrombin receptor protease-activated receptor 1 and Gq-protein-mediated phospholipase C activation. Inhibition of CaMKK with STO-609 or downregulation of CaMKKβ using RNA interference decreased thrombin-induced AMPK activation significantly, indicating that CaMKKβ was the responsible AMPK kinase. In contrast, downregulation of LKB1 did not affect thrombin-induced AMPK activation but abolished phosphorylation of AMPK with 5-aminoimidazole-4-carboxamide ribonucleoside. Thrombin stimulation led to phosphorylation of acetyl coenzyme A carboxylase (ACC) and endothelial nitric oxide synthase (eNOS), two downstream targets of AMPK. Inhibition or downregulation of CaMKKβ or AMPK abolished phosphorylation of ACC in response to thrombin but had no effect on eNOS phosphorylation, indicating that thrombin-stimulated phosphorylation of eNOS is not mediated by AMPK. Our results underline the role of Ca2+ as a regulator of AMPK activation in response to a physiologic stimulation. We also demonstrate that endothelial cells possess two pathways to activate AMPK, one Ca2+/CaMKKβ dependent and one AMP/LKB1 dependent.


Experimental Biology and Medicine | 2003

Tetrahydrobiopterin and nitric oxide: mechanistic and pharmacological aspects.

Ernst R. Werner; Antonius C. F. Gorren; Regine Heller; Gabriele Werner-Felmayer; Bernd Mayer

In previous minireviews in this journal, we discussed work on induction of tetrahydrobiopterin biosynthesis by cytokines and its significance for nitric oxide (NO) production of intact cells as well as functions of H4-blopterin identified at this time for NO synthases (Proc Soc Exp Biol Med 203: 1–12, 1993; Proc Soc Exp Biol Med 219:171–182, 1998). Meanwhile, the recognition of the importance of tetrahydrobiopterin for NO formation has led to new insights into complex biological processes and revealed possible novel pharmacological strategies to Intervene in certain pathological conditions. Recent work could also establish that tetrahydrobiopterin, in addition to its allosteric effects, is redox-active in the NO synthase reaction. In this review, we summarize the current view of how tetrahydrobiopterin functions in the generation of NO and focus on pharmacological aspects of tetrahydrobiopterin availability with emphasis on endothelial function.


Journal of Biological Chemistry | 2001

Hypochlorite-modified Low Density Lipoprotein Inhibits Nitric Oxide Synthesis in Endothelial Cells via an Intracellular Dislocalization of Endothelial Nitric-oxide Synthase

Alexander Nuszkowski; Rolf Gräbner; Gunther Marsche; Anett Unbehaun; Ernst Malle; Regine Heller

Hypochlorous acid/hypochlorite, generated by the myeloperoxidase/H2O2/halide system of activated phagocytes, has been shown to oxidize/modify low density lipoprotein (LDL) in vitro and may be involved in the formation of atherogenic lipoproteins in vivo. Accordingly, hypochlorite-modified (lipo)proteins have been detected in human atherosclerotic lesions where they colocalize with macrophages and endothelial cells. The present study investigates the influence of hypochlorite-modified LDL on endothelial synthesis of nitric oxide (NO) measured as formation of citrulline (coproduct of NO) and cGMP (product of the NO-activated soluble guanylate cyclase) upon cell stimulation with thrombin or ionomycin. Pretreatment of human umbilical vein endothelial cells with hypochlorite-modified LDL led to a time- and concentration-dependent inhibition of agonist-induced citrulline and cGMP synthesis compared with preincubation of cells with native LDL. This inhibition was neither due to a decreased expression of endothelial NO synthase (eNOS) nor to a deficiency of its cofactor tetrahydrobiopterin. Likewise, the uptake of l-arginine, the substrate of eNOS, into the cells was not affected. Hypochlorite-modified LDL caused remarkable changes of intracellular eNOS distribution including translocation from the plasma membrane and disintegration of the Golgi location without altering myristoylation or palmitoylation of the enzyme. In contrast, cyclodextrin known to deplete plasma membrane of cholesterol and to disrupt caveolae induced only a disappearance of eNOS from the plasma membrane that was not associated with decreased agonist-induced citrulline and cGMP formation. The present findings suggest that mislocalization of NOS accounts for the reduced NO formation in human umbilical vein endothelial cells treated with hypochlorite-modified LDL and point to an important role of Golgi-located NOS in these processes. We conclude that inhibition of NO synthesis by hypochlorite-modified LDL may be an important mechanism in the development of endothelial dysfunction and early pathogenesis of atherosclerosis.


The FASEB Journal | 2009

Different functions of monocyte subsets in familial hypercholesterolemia: potential function of CD14+CD16+ monocytes in detoxification of oxidized LDL

Sandy Mosig; Knut Rennert; Siegfried Krause; Julia Kzhyshkowska; Kerstin Neunübel; Regine Heller; Harald Funke

The study was undertaken to investigate whether the two major monocyte subsets defined by the surface markers CD14+CD16+ and CD14++CD16− show differences in their responses to hypercholesterolemia. Monocytes were rapidly isolated from the blood of hypercholesterolemic, low‐density lipoprotein (LDL) receptor‐defective familial hypercholesterolemia (FH) patients and from control persons. Using flow cytometry and uptake, adhesion, and phagocytosis assays as well as laser scanning microscopy, we found significant differences between the monocyte subsets. FH‐CD14+CD16+ monocytes exhibit an increased uptake of oxidized LDL (oxLDL) via CD36, whereas FH‐CD14++CD16− monocytes preferentially take up native LDL (nLDL). FH‐CD14+CD16+ monocytes have an increased expression of surface proteins CD68, stabilin‐1, and CD11c and a higher adherence to activated endothelial cells in response to oxLDL and nLDL stimulation. In addition, all CD14+CD16+ monocytes have an increased ability for phagocytosis and a higher resistance to phagocytosis impairment by oxLDL compared with CD14++CD16− monocytes. We conclude that FH‐CD14+CD16+ monocytes have specialized functions in the uptake of oxLDL at activated endothelial cell surfaces, and we hypothesize that these functions are critical for the clearance of oxLDL deposits and apoptotic cells from the vessel wall under hyperlipidemic conditions.— Mosig, S., Rennert, K., Krause, S., Kzhyshkowska, J., Neunubel, K., Heller, R., Funke, H. Different functions of monocyte subsets in familial hypercholesterolemia: potential function of CD14+CD16+ monocytes in detoxification of oxidized LDL. FASEB J. 23, 866–874 (2009)


Arteriosclerosis, Thrombosis, and Vascular Biology | 2004

2-Chlorohexadecanal Derived From Hypochlorite-Modified High-Density Lipoprotein–Associated Plasmalogen Is a Natural Inhibitor of Endothelial Nitric Oxide Biosynthesis

Gunther Marsche; Regine Heller; Günter Fauler; Alenka Kovacevic; Alexander Nuszkowski; Wolfgang F. Graier; Wolfgang Sattler; Ernst Malle

Objective—Myeloperoxidase, a heme enzyme that is present and active in human atherosclerotic lesions, provides a source for the generation of proinflammatory chlorinated reactants contributing to endothelial dysfunction. Modification of high-density lipoprotein (HDL) by hypochlorous acid/hypochlorite (HOCl/Oce−)—generated in vivo by the myeloperoxidase-hydrogen peroxide-chloride system of activated phagocytes—forms a proatherogenic lipoprotein particle that binds to and is internalized by endothelial cells. Methods and Results—Here we show that HDL, modified with physiologically relevant HOCl concentrations, attenuates the expression and activity of vasculoprotective endothelial nitric oxide synthase. HOCl-HDL promotes dislocalization of endothelial nitric oxide synthase from the plasma membrane and perinuclear location of human umbilical venous endothelial cells. We could identify 2-chlorohexadecanal as the active component mediating this inhibitory activity. This chlorinated fatty aldehyde is formed during HOCl-mediated oxidative cleavage of HDL-associated plasmalogen. Conclusion—2-Chlorohexadecanal, produced by the myeloperoxidase-hydrogen peroxide-chloride system of activated phagocytes may act as a mediator of vascular injury associated with ischemia-reperfusion injury, glomerulosclerosis, and atherosclerosis.


Journal of Biological Chemistry | 2010

Activation of AMP-activated Protein Kinase by Vascular Endothelial Growth Factor Mediates Endothelial Angiogenesis Independently of Nitric-oxide Synthase

Nadine Stahmann; Angela Woods; Katrin Spengler; Amanda Heslegrave; Reinhard Bauer; Siegfried Krause; Benoit Viollet; David Carling; Regine Heller

AMP-activated protein kinase (AMPK) is a sensor of cellular energy state and a regulator of cellular homeostasis. In endothelial cells, AMPK is stimulated via the upstream kinases LKB1 and Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ). Previously, AMPK has been reported to activate endothelial nitric-oxide synthase (eNOS). Using genetic and pharmacological approaches, we show that vascular endothelial growth factor (VEGF) stimulates AMPK in human and mice endothelial cells via CaMKKβ. VEGF-induced AMPK activation is potentiated under conditions of energy deprivation induced by 2-deoxyglucose. To investigate the role of AMPK in endothelial function, CaMKKβ, AMPKα1, or AMPKα2 was down-regulated by RNA interference, and studies in AMPKα1−/− mice were performed. We demonstrate that AMPK does not mediate eNOS phosphorylation at serine residue 1177 or 633, NO- dependent cGMP generation, or Akt phosphorylation in response to VEGF. Using inhibitors of eNOS or soluble guanylyl cyclase and small interfering RNA against eNOS, we show that NO does not act upstream of AMPK. Taken together, these data indicate that VEGF-stimulated AMPK and eNOS pathways act independently of each other. However, acetyl-CoA carboxylase, a key enzyme in the regulation of fatty acid oxidation, was phosphorylated in response to VEGF in an AMPKα1- and AMPKα2-dependent manner. Our results show that AMPKα1 plays an essential role in VEGF-induced angiogenesis in vitro (tube formation and sprouting from spheroids) and in vivo (Matrigel plug assay). In contrast, AMPKα2 was not involved in VEGF-triggered sprouting. The data suggest that AMPKα1 promotes VEGF-induced angiogenesis independently of eNOS, possibly by providing energy via inhibition of acetyl-CoA carboxylase.


Biochemical Pharmacology | 1992

Nitrovasodilators inhibit thrombin-induced platelet-activating factor synthesis in human endothelial cells

Regine Heller; Federico Bussolino; Dario Ghigo; Giovanni Garbarino; Glanpiero Pescarmona; Uwe Till; Amalia Bosia

In response to inflammatory agents such as thrombin, cultured endothelial cells produce platelet-activating factor (PAF), which has been linked with most inflammatory and immune processes, and is a potent coronary constrictor. Sodium nitroprusside (SNP) and SIN-1 (3-morpholinosydnonimine), which spontaneously release the free radical nitric oxide (NO), cause direct relaxation of blood vessels and inhibition of platelet aggregation by activating soluble guanylate cyclase. In the present study we report that in human umbilical vein endothelial cells (HUVEC) these compounds stimulate the production of cGMP and inhibit thrombin-induced PAF synthesis in a concentration-dependent manner. 8-bromo-cGMP, a permeant non-hydrolysable analogue of cGMP, mimics the inhibitory effect of NO-generating vasodilators. PAF synthesis requires phospholipase A2-mediated hydrolysis of membrane precursors to lyso-PAF, which is in turn converted into PAF by an acetyltransferase. The thrombin-elicited activation of both enzymes is inhibited in a dose-dependent way in HUVEC pretreated with SNP and SIN-1. The inhibitory effect of SNP and SIN-1 on the thrombin-mediated PAF synthesis suggests a new mechanism of action whereby the endogenous NO can affect vascular tone and endothelium-dependent intercellular adhesion. Moreover, PAF production in endothelial cells appears to be an important target for the pharmacological action of nitrovasodilators.

Collaboration


Dive into the Regine Heller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ernst R. Werner

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Bauer

Dresden University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge