Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Régis Delage-Mourroux is active.

Publication


Featured researches published by Régis Delage-Mourroux.


Redox biology | 2015

Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy.

Laura Poillet-Perez; Gilles Despouy; Régis Delage-Mourroux; Michaël Boyer-Guittaut

Cancer formation is a complex and highly regulated multi-step process which is highly dependent of its environment, from the tissue to the patient. This complexity implies the development of specific treatments adapted to each type of tumor. The initial step of cancer formation requires the transformation of a healthy cell to a cancer cell, a process regulated by multiple intracellular and extracellular stimuli. The further steps, from the anarchic proliferation of cancer cells to form a primary tumor to the migration of cancer cells to distant organs to form metastasis, are also highly dependent of the tumor environment but of intracellular molecules and pathways as well. In this review, we will focus on the regulatory role of reactive oxygen species (ROS) and autophagy levels during the course of cancer development, from cellular transformation to the formation of metastasis. These data will allow us to discuss the potential of this molecule or pathway as putative future therapeutic targets.


Epigenetics | 2013

Epigenetic regulation of estrogen signaling in breast cancer.

Eric Hervouet; Pierre-François Cartron; Michèle Jouvenot; Régis Delage-Mourroux

Estrogen signaling is mediated by ERα and ERβ in hormone dependent, breast cancer (BC). Over the last decade the implication of epigenetic pathways in BC tumorigenesis has emerged: cancer-related epigenetic modifications are implicated in both gene expression regulation, and chromosomal instability. In this review, the epigenetic-mediated estrogen signaling, controlling both ER level and ER-targeted gene expression in BC, are discussed: (1) ER silencing is frequently observed in BC and is often associated with epigenetic regulations while chemical epigenetic modulators restore ER expression and increase response to treatment;(2) ER-targeted gene expression is tightly regulated by co-recruitment of ER and both coactivators/corepressors including HATs, HDACs, HMTs, Dnmts and Polycomb proteins.


Autophagy | 2010

GABARAPL1 (GEC1) associates with autophagic vesicles

Fatima Zahra Chakrama; Stéphanie Seguin-Py; Jaclyn Nicole Le Grand; Annick Fraichard; Régis Delage-Mourroux; Gilles Despouy; Valérie Perez; Michèle Jouvenot; Michaël Boyer-Guittaut

Gabarapl1 (gec1) was first described as an estrogen regulated gene which shares a high sequence homology with the gabarap gene. We previously demonstrated that GABARAPL1, like GABARAP, interacts with the GABAA receptor and tubulin and promotes tubulin polymerization. Previous work has demonstrated that the GABARAP family members (GABARAP, LC3, GATE-16 and Atg8) are not only involved in the transport of proteins or vesicles but are also implicated in various mechanisms such as autophagy, cell death, cell proliferation and tumor progression. We therefore asked whether GABARAPL1 might also play a role in autophagy. First, we showed that GABARAPL1 is cleaved at glycine 116, a residue which is conserved in other members of the family. We also demonstrated that GABARAPL1 is linked to phospholipids, delipidated by Atg4B, associated with intracellular membranes and accumulated in intracellular vesicles after inhibition of lysosomal activity. Finally, we showed that GABARAPL1 partially colocalizes with LC3 or Lysotracker green in intracellular vesicles. Taken together, our results demonstrate that GABARAPL1 associates with autophagic vesicles.


Biochemical and Biophysical Research Communications | 2014

Induction of oxiapoptophagy, a mixed mode of cell death associated with oxidative stress, apoptosis and autophagy, on 7-ketocholesterol-treated 158N murine oligodendrocytes: impairment by α-tocopherol.

Thomas Nury; Amira Zarrouk; Anne Vejux; Margaux Doria; Jean Marc Riedinger; Régis Delage-Mourroux; Gérard Lizard

7-Ketocholesterol (7KC) has been suggested to induce a complex mode of cell death on monocytic cells: oxiapoptophagy (OXIdation, APOPTOsis, and autoPHAGY) (Monier et al. (2003) [12]). The aim of the present study, realized on 158N murine oligodendrocytes, was to bring new evidence on this mixed form of cell death. On 158N cells, 7KC induces an overproduction of reactive oxygen species (ROS) revealed by dihydroethidium staining, a loss of transmembrane mitochondrial potential measured with DiOC6(3), caspase-3 activation, and condensation and/or fragmentation of the nuclei which are typical criteria of oxidative stress and apoptosis. Moreover, 7KC enhances cytoplamic membrane permeability to propidium iodide, and induces acidic vesicular organelle formation evaluated with acridine orange. In addition, 7KC promotes conversion of microtubule-associated protein light chain 3 (LC3-I) to LC3-II which is characteristic of autophagy. These different side effects were impaired by α-tocopherol. Altogether, our data demonstrate that oxiapoptophagy including ROS overproduction, apoptosis and autophagy could be a particular type of cell death activated by 7KC which can be inhibited by α-tocopherol.


Autophagy | 2011

GABARAPL1 (GEC1): original or copycat?

Jaclyn Nicole Le Grand; Fatima Zahra Chakrama; Stéphanie Seguin-Py; Annick Fraichard; Régis Delage-Mourroux; Michèle Jouvenot; Michaël Boyer-Guittaut

The GABARAPL1 (GABARAP-LIKE 1) gene was first described as an early estrogen-regulated gene that shares a high sequence homology with GABARAP and is thus a part of the GABARAP family. GABARAPL1, like GABARAP, interacts with the GABAA receptor and tubulin and promotes tubulin polymerization. The GABARAP family members (GABARAP, GABARAPL1 and GABARAPL2) and their close homologs (LC3 and Atg8) are not only involved in the transport of proteins or vesicles but are also implicated in various mechanisms such as autophagy, cell death, cell proliferation and tumor progression. However, despite these similarities, GABARAPL1 displays a complex regulation that is different from that of other GABARAP family members. Moreover, it presents a regulated tissue expression and is the most highly expressed gene among the family in the central nervous system. In this review article, we will outline the specific functions of this protein and also hypothesize about the roles that GABARAPL1 might have in several important biological processes such as cancer or neurodegenerative diseases.


Steroids | 2015

Induction of oxiapoptophagy on 158N murine oligodendrocytes treated by 7-ketocholesterol-, 7β-hydroxycholesterol-, or 24(S)-hydroxycholesterol: Protective effects of α-tocopherol and docosahexaenoic acid (DHA; C22:6 n-3).

Thomas Nury; Amira Zarrouk; John J. Mackrill; Mohammad Samadi; Philippe Durand; Jean-Marc Riedinger; Margaux Doria; Anne Vejux; Emeric Limagne; Dominique Delmas; Michel Prost; Thibault Moreau; Mohamed Hammami; Régis Delage-Mourroux; Nora M. O’Brien; Gérard Lizard

In demyelinating or non-demyelinating neurodegenerative diseases, increased levels of 7-ketocholesterol (7KC), 7β-hydroxycholesterol (7β-OHC) and 24(S)-hydroxycholesterol (24S-OHC) can be observed in brain lesions. In 158N murine oligodendrocytes, 7KC triggers a complex mode of cell death defined as oxiapoptophagy, involving simultaneous oxidative stress, apoptosis and autophagy. In these cells, 7KC as well as 7β-OHC and 24S-OHC induce a decrease of cell proliferation evaluated by phase contrast microscopy, an alteration of mitochondrial activity quantified with the MTT test, an overproduction of reactive oxygen species revealed by staining with dihydroethidium and dihydrorhodamine 123, caspase-3 activation, PARP degradation, reduced expression of Bcl-2, and condensation and/or fragmentation of the nuclei which are typical criteria of oxidative stress and apoptosis. Moreover, 7KC, 7β-OHC and 24S-OHC promote conversion of microtubule-associated protein light chain 3 (LC3-I) to LC3-II which is a characteristic of autophagy. Consequently, 7β-OHC and 24S-OHC, similarly to 7KC, can be considered as potent inducers of oxiapoptophagy. Furthermore, the different cytotoxic effects associated with 7KC, 7β-OHC and 24S-OHC-induced oxiapoptophagy are attenuated by vitamin E (VitE, α-tocopherol) and DHA which enhances VitE protective effects. In 158N murine oligodendrocytes, our data support the concept that oxiapoptophagy, which can be inhibited by VitE and DHA, could be a particular mode of cell death elicited by cytotoxic oxysterols.


Autophagy | 2014

The role of GABARAPL1/GEC1 in autophagic flux and mitochondrial quality control in MDA-MB-436 breast cancer cells

Michaël Boyer-Guittaut; Laura Poillet; Qiuli Liang; Elodie Bole-Richard; Xiaosen Ouyang; Gloria A. Benavides; Fatima-Zahra Chakrama; Annick Fraichard; Victor M. Darley-Usmar; Gilles Despouy; Michèle Jouvenot; Régis Delage-Mourroux; Jianhua Zhang

GABARAPL1/GEC1 is an early estrogen-induced gene which encodes a protein highly conserved from C. elegans to humans. Overexpressed GABARAPL1 interacts with GABAA or kappa opioid receptors, associates with autophagic vesicles, and inhibits breast cancer cell proliferation. However, the function of endogenous GABARAPL1 has not been extensively studied. We hypothesized that GABARAPL1 is required for maintaining normal autophagic flux, and plays an important role in regulating cellular bioenergetics and metabolism. To test this hypothesis, we knocked down GABARAPL1 expression in the breast cancer MDA-MB-436 cell line by shRNA. Decreased expression of GABARAPL1 activated procancer responses of the MDA-MB-436 cells including increased proliferation, colony formation, and invasion. In addition, cells with decreased expression of GABARAPL1 exhibited attenuated autophagic flux and a decreased number of lysosomes. Moreover, decreased GABARAPL1 expression led to cellular bioenergetic changes including increased basal oxygen consumption rate, increased intracellular ATP, increased total glutathione, and an accumulation of damaged mitochondria. Taken together, our results demonstrate that GABARAPL1 plays an important role in cell proliferation, invasion, and autophagic flux, as well as in mitochondrial homeostasis and cellular metabolic programs.


Brain Research | 2006

Specific distribution of gabarap, gec1/gabarap Like 1, gate16/gabarap Like 2, lc3 messenger RNAs in rat brain areas by quantitative real-time PCR.

Virginie Mansuy-Schlick; Fabrice Tolle; Régis Delage-Mourroux; Annick Fraichard; Pierre Yves Risold; Michèle Jouvenot

GABARAP and GEC1/GABARAPL1 interact with tubulin and GABA(A) receptor and belong to a new protein family. This family includes GATE 16 and LC3, potentially involved in intracellular transport processes. In this study, we combined brain dissection and quantitative real-time reverse transcription polymerase chain reaction to study discriminatively gabarap, gec1/gabarapL1, gate16/gabarapL2, lc3 mRNA distribution in multiple rat brain areas.


PLOS ONE | 2013

Specific distribution of the autophagic protein GABARAPL1/GEC1 in the developing and adult mouse brain and identification of neuronal populations expressing GABARAPL1/GEC1.

Jaclyn Nicole Le Grand; Karine Bon; Annick Fraichard; Jianhua Zhang; Michèle Jouvenot; Pierre-Yves Risold; Michaël Boyer-Guittaut; Régis Delage-Mourroux

Macroautophagy is a highly conserved cellular degradation process, regulated by autophagy-related (atg) factors, in which a double membrane autophagosome engulfs cytoplasmic components to target them for degradation. In yeast, the Atg8 protein is indispensable for autophagosome formation. In mammals, this is complicated by the presence of six Atg8 homologues grouped into the GABARAP and MAP1LC3 subfamilies. Although these proteins share a high similarity, their transcript expression, regulation and protein interactions differ, suggesting they may display individual properties and specific functions. GABARAPL1/GEC1 is a member of the GABARAP subfamily and its mRNA is the most highly expressed Atg8 homologue in the central nervous system. Consequently, we performed an in depth study of GABARAPL1 distribution in the developing and adult murine brain. Our results show that GABARAPL1 brain expression is visible as early as embryonic day 11 and progressively increases to a maximum level in the adult. Immunohistochemical staining was detected in both fibers and immature neurons in embryos but was restrained to neurons in adult tissue. By E17, intense punctate-like structures were visible and these accumulated in cortical primary neurons treated with the autophagosome/lysosome fusion inhibitor Bafilomycin A1 (Baf A1), suggesting that they represent autophagosomes. Finally, GABARAPL1 expression was particularly intense in motoneurons in the embryo and in neurons involved in somatomotor and neuroendocrine functions in the adult, particularly in the substantia nigra pars compacta, a region affected in Parkinsons disease. Our study of cerebral GABARAPL1 protein expression provides insight into its role in the development and homeostasis of the mouse brain.


Journal of Molecular Recognition | 2011

Label-free sensing and atomic force spectroscopy for the characterization of protein-DNA and protein-protein interactions: application to estrogen receptors.

Alexandre Berthier; Céline Elie-Caille; E. Lesniewska; Régis Delage-Mourroux; Wilfrid Boireau

In this paper we describe a new surface plasmon resonance (SPR) biosensor dedicated to potential estrogenic compounds prescreening, by developing an estrogen receptor (ER) specific DNA chip. Through the covalent binding of a DNA strain wearing the estrogen response element (ERE) to an activated 6‐mercapto‐1‐hexadecanoic acid and 11‐mercapto‐1‐undecanol self‐assembled monolayer on gold surface, the SPR biosensor allows to detect specifically, quickly, and without any labeling the binding of ER in the presence of estrogen. In parallel, we investigated the ER interaction with itself, in order to study the formation of ER dimer apparently needed to activate the gene expression through ERE interaction. For that, we engaged force spectroscopy experiments that allowed us to prove that ER needs estrogen for its dimerization. Moreover, these ER/ER intermolecular measurements enabled to propose an innovative screening tool for anti‐estrogenic compounds, molecules of interest for hormono‐dependant cancer therapy. Copyright

Collaboration


Dive into the Régis Delage-Mourroux's collaboration.

Top Co-Authors

Avatar

Michèle Jouvenot

University of Franche-Comté

View shared research outputs
Top Co-Authors

Avatar

Annick Fraichard

University of Franche-Comté

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gilles Despouy

University of Franche-Comté

View shared research outputs
Top Co-Authors

Avatar

Aurore Claude-Taupin

University of Franche-Comté

View shared research outputs
Top Co-Authors

Avatar

Christophe Nemos

University of Franche-Comté

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stéphanie Seguin-Py

University of Franche-Comté

View shared research outputs
Top Co-Authors

Avatar

Wilfrid Boireau

University of Franche-Comté

View shared research outputs
Researchain Logo
Decentralizing Knowledge