Régis Pomès
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Régis Pomès.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Nilmadhab Chakrabarti; Christopher Ing; Jian Payandeh; Ning Zheng; William A. Catterall; Régis Pomès
Determination of a high-resolution 3D structure of voltage-gated sodium channel NaVAb opens the way to elucidating the mechanism of ion conductance and selectivity. To examine permeation of Na+ through the selectivity filter of the channel, we performed large-scale molecular dynamics simulations of NaVAb in an explicit, hydrated lipid bilayer at 0 mV in 150 mM NaCl, for a total simulation time of 21.6 μs. Although the cytoplasmic end of the pore is closed, reversible influx and efflux of Na+ through the selectivity filter occurred spontaneously during simulations, leading to equilibrium movement of Na+ between the extracellular medium and the central cavity of the channel. Analysis of Na+ dynamics reveals a knock-on mechanism of ion permeation characterized by alternating occupancy of the channel by 2 and 3 Na+ ions, with a computed rate of translocation of (6 ± 1) × 106 ions⋅s−1 that is consistent with expectations from electrophysiological studies. The binding of Na+ is intimately coupled to conformational isomerization of the four E177 side chains lining the extracellular end of the selectivity filter. The reciprocal coordination of variable numbers of Na+ ions and carboxylate groups leads to their condensation into ionic clusters of variable charge and spatial arrangement. Structural fluctuations of these ionic clusters result in a myriad of ion binding modes and foster a highly degenerate, liquid-like energy landscape propitious to Na+ diffusion. By stabilizing multiple ionic occupancy states while helping Na+ ions diffuse within the selectivity filter, the conformational flexibility of E177 side chains underpins the knock-on mechanism of Na+ permeation.
Biophysical Journal | 2010
Nilmadhab Chakrabarti; Chris Neale; Jian Payandeh; Emil F. Pai; Régis Pomès
Magnesium translocation across cell membranes is essential for numerous physiological processes. Three recently reported crystal structures of the CorA magnesium transport system revealed a surprising architecture, with a bundle of giant alpha-helices forming a 60-A-long pore that extends beyond the membrane before widening into a funnel-shaped cytosolic domain. The presence of divalent cations in putative intracellular regulation sites suggests that these structures correspond to the closed conformation of CorA. To examine the nature of the conduction pathway, we performed 110-ns molecular-dynamics simulations of two of these structures in a lipid bilayer with and without regulatory ions. The results show that a 15-A-long hydrophobic constriction straddling the membrane-cytosol interface constitutes a steric bottleneck whose location coincides with an electrostatic barrier opposing cation translocation. In one of the simulations, structural relaxation after the removal of regulatory ions led to concerted changes in the tilt of the pore helices, resulting in iris-like dilation and spontaneous hydration of the hydrophobic neck. This simple and robust mechanism is consistent with the regulation of pore opening by intracellular magnesium concentration, and explains the unusual architecture of CorA.
Nanomedicine: Nanotechnology, Biology and Medicine | 2012
Loan Huynh; Chris Neale; Régis Pomès; Christine Allen
UNLABELLED Nanoparticles are promising drug delivery systems whose selection and optimization can be gainfully conducted by theoretical methods. This review is targeted to experimentalists who are interested in enhancing their time and cost efficiency through the incorporation of theoretical approaches. This review thus begins with a brief overview of theoretical approaches available to the development of contemporary drug delivery systems. Approaches include solubility parameters, Flory-Huggins theory, analytical predictions of partition coefficients, and molecular simulations. These methods are then compared as they relate to the optimization of drug-material pairs using important performance-related parameters including the size of the delivery particles, their surface properties, and the compatibility of the materials with the drug to be sequestered. Next, this review explores contemporary efforts to optimize a selection of existing nanoparticle platforms, including nanoemulsions, linear and star-shaped block co-polymer micelles, and dendrimers. The review concludes with an outlook on the challenges remaining in the successful application of these theoretical methods to the development of new drug formulations. FROM THE CLINICAL EDITOR This paper is a comprehensive review of the many approaches available to assist the optimization of nanoparticle drug delivery vehicles, including a detailed discussion of methodological applicability, a survey of contemporary efforts to optimize a selection of frequently used nanoparticle subtypes.
Journal of Chemical Theory and Computation | 2013
Chris Neale; Chris Madill; Sarah Rauscher; Régis Pomès
All molecular dynamics simulations are susceptible to sampling errors, which degrade the accuracy and precision of observed values. The statistical convergence of simulations containing atomistic lipid bilayers is limited by the slow relaxation of the lipid phase, which can exceed hundreds of nanoseconds. These long conformational autocorrelation times are exacerbated in the presence of charged solutes, which can induce significant distortions of the bilayer structure. Such long relaxation times represent hidden barriers that induce systematic sampling errors in simulations of solute insertion. To identify optimal methods for enhancing sampling efficiency, we quantitatively evaluate convergence rates using generalized ensemble sampling algorithms in calculations of the potential of mean force for the insertion of the ionic side chain analog of arginine in a lipid bilayer. Umbrella sampling (US) is used to restrain solute insertion depth along the bilayer normal, the order parameter commonly used in simulations of molecular solutes in lipid bilayers. When US simulations are modified to conduct random walks along the bilayer normal using a Hamiltonian exchange algorithm, systematic sampling errors are eliminated more rapidly and the rate of statistical convergence of the standard free energy of binding of the solute to the lipid bilayer is increased 3-fold. We compute the ratio of the replica flux transmitted across a defined region of the order parameter to the replica flux that entered that region in Hamiltonian exchange simulations. We show that this quantity, the transmission factor, identifies sampling barriers in degrees of freedom orthogonal to the order parameter. The transmission factor is used to estimate the depth-dependent conformational autocorrelation times of the simulation system, some of which exceed the simulation time, and thereby identify solute insertion depths that are prone to systematic sampling errors and estimate the lower bound of the amount of sampling that is required to resolve these sampling errors. Finally, we extend our simulations and verify that the conformational autocorrelation times estimated by the transmission factor accurately predict correlation times that exceed the simulation time scale-something that, to our knowledge, has never before been achieved.
field-programmable custom computing machines | 2006
Arun Patel; Christopher A. Madill; Manuel Saldaña; Christopher Comis; Régis Pomès; Paul Chow
It has been shown that a small number of FPGAs can significantly accelerate certain computing tasks by up to two or three orders of magnitude. However, particularly intensive large-scale computing applications, such as molecular dynamics simulations of biological systems, underscore the need for even greater speedups to address relevant length and time scales. In this work, we propose an architecture for a scalable computing machine built entirely using FPGA computing nodes. The machine enables designers to implement large-scale computing applications using a heterogeneous combination of hardware accelerators and embedded microprocessors spread across many FPGAs, all interconnected by a flexible communication network. Parallelism at multiple levels of granularity within an application can be exploited to obtain the maximum computational throughput. By focusing on applications that exhibit a high computation-to-communication ratio, we narrow the extent of this investigation to the development of a suitable communication infrastructure for our machine, as well as an appropriate programming model and design flow for implementing applications. By providing a simple, abstracted communication interface with the objective of being able to scale to thousands of FPGA nodes, the proposed architecture appears to the programmer as a unified, extensible FPGA fabric. A programming model based on the MPI message-passing standard is also presented as a means for partitioning an application into independent computing tasks that can be implemented on our architecture. Finally, we demonstrate the first use of our design flow by developing a simple molecular dynamics simulation application for the proposed machine, which runs on a small platform of development boards
Structure | 2010
Jose Antonio Cuesta-Seijo; Chris Neale; M. Adil Khan; Joel Moktar; Christopher D. Tran; Russell E. Bishop; Régis Pomès; Gilbert G. Privé
Enzymatic reactions involving bilayer lipids occur in an environment with strict physical and topological constraints. The integral membrane enzyme PagP transfers a palmitoyl group from a phospholipid to lipid A in order to assist Escherichia coli in evading host immune defenses during infection. PagP measures the palmitoyl group with an internal hydrocarbon ruler that is formed in the interior of the eight-stranded antiparallel β barrel. The access and egress of the palmitoyl group is thought to take a lateral route from the bilayer phase to the barrel interior. Molecular dynamics, mutagenesis, and a 1.4 A crystal structure of PagP in an SDS / 2-methyl-2,4-pentanediol (MPD) cosolvent system reveal that phospholipid access occurs at the crenel present between strands F and G of PagP. In this way, the phospholipid head group can remain exposed to the cell exterior while the lipid acyl chain remains in a predominantly hydrophobic environment as it translocates to the protein interior.
Biochemistry and Cell Biology | 2010
Sarah Rauscher; Régis Pomès
Protein disorder is abundant in proteomes throughout all kingdoms of life and serves many biologically important roles. Disordered states of proteins are challenging to study experimentally due to their structural heterogeneity and tendency to aggregate. Computer simulations, which are not impeded by these properties, have recently emerged as a useful tool to characterize the conformational ensembles of intrinsically disordered proteins. In this review, we provide a survey of computational studies of protein disorder with an emphasis on the interdisciplinary nature of these studies. The application of simulation techniques to the study of disordered states is described in the context of experimental and bioinformatics approaches. Experimental data can be incorporated into simulations, and simulations can provide predictions for experiment. In this way, simulations have been integrated into the existing methodologies for the study of disordered state ensembles. We provide recent examples of simulations of disordered states from the literature and our own work. Throughout the review, we emphasize important predictions and biophysical understanding made possible through the use of simulations. This review is intended as both an overview and a guide for structural biologists and theoretical biophysicists seeking accurate, atomic-level descriptions of disordered state ensembles.
Biochimica et Biophysica Acta | 2008
Elisa Fadda; Ching-Hsing Yu; Régis Pomès
As part of the mitochondrial respiratory chain, cytochrome c oxidase utilizes the energy produced by the reduction of O2 to water to fuel vectorial proton transport. The mechanism coupling proton pumping to redox chemistry is unknown. Recent advances have provided evidence that each of the four observable transitions in the complex catalytic cycle consists of a similar sequence of events. However, the physico-chemical basis underlying this recurring sequence has not been identified. We identify this recurring pattern based on a comprehensive model of the catalytic cycle derived from the analysis of oxygen chemistry and available experimental evidence. The catalytic cycle involves the periodic repetition of a sequence of three states differing in the spatial distribution of charge in the active site: [0|1], [1|0], and [1|1], where the total charge of heme a and the binuclear center appears on the left and on the right, respectively. This sequence recurs four times per turnover despite differences in the redox chemistry. This model leads to a simple, robust, and reproducible sequence of electron and proton transfer steps and rationalizes the pumping mechanism in terms of electrostatic coupling of proton translocation to redox chemistry. Continuum electrostatic calculations support the proposed mechanism and suggest an electrostatic origin for the decoupled and inactive phenotypes of ionic mutants in the principal proton-uptake pathway.
Journal of Chemical Theory and Computation | 2009
Sarah Rauscher; Chris Neale; Régis Pomès
Generalized-ensemble algorithms in temperature space have become popular tools to enhance conformational sampling in biomolecular simulations. A random walk in temperature leads to a corresponding random walk in potential energy, which can be used to cross over energetic barriers and overcome the problem of quasi-nonergodicity. In this paper, we introduce two novel methods: simulated tempering distributed replica sampling (STDR) and virtual replica exchange (VREX). These methods are designed to address the practical issues inherent in the replica exchange (RE), simulated tempering (ST), and serial replica exchange (SREM) algorithms. RE requires a large, dedicated, and homogeneous cluster of CPUs to function efficiently when applied to complex systems. ST and SREM both have the drawback of requiring extensive initial simulations, possibly adaptive, for the calculation of weight factors or potential energy distribution functions. STDR and VREX alleviate the need for lengthy initial simulations, and for synchronization and extensive communication between replicas. Both methods are therefore suitable for distributed or heterogeneous computing platforms. We perform an objective comparison of all five algorithms in terms of both implementation issues and sampling efficiency. We use disordered peptides in explicit water as test systems, for a total simulation time of over 42 μs. Efficiency is defined in terms of both structural convergence and temperature diffusion, and we show that these definitions of efficiency are in fact correlated. Importantly, we find that ST-based methods exhibit faster temperature diffusion and correspondingly faster convergence of structural properties compared to RE-based methods. Within the RE-based methods, VREX is superior to both SREM and RE. On the basis of our observations, we conclude that ST is ideal for simple systems, while STDR is well-suited for complex systems.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Roland Pfoh; Angela Li; Nilmadhab Chakrabarti; Jian Payandeh; Régis Pomès; Emil F. Pai
Magnesium ions (Mg2+) are essential for life, but the mechanisms regulating their transport into and out of cells remain poorly understood. The CorA-Mrs2-Alr1 superfamily of Mg2+ channels represents the most prevalent group of proteins enabling Mg2+ ions to cross membranes. Thermotoga maritima CorA (TmCorA) is the only member of this protein family whose complete 3D fold is known. Here, we report the crystal structure of a mutant in the presence and absence of divalent ions and compare it with previous divalent ion-bound TmCorA structures. With Mg2+ present, this structure shows binding of a hydrated Mg2+ ion to the periplasmic Gly-Met-Asn (GMN) motif, revealing clues of ion selectivity in this unique channel family. In the absence of Mg2+, TmCorA displays an unexpected asymmetric conformation caused by radial and lateral tilts of protomers that leads to bending of the central, pore-lining helix. Molecular dynamics simulations support these movements, including a bell-like deflection. Mass spectrometric analysis confirms that major proteolytic cleavage occurs within a region that is selectively exposed by such a bell-like bending motion. Our results point to a sequential allosteric model of regulation, where intracellular Mg2+ binding locks TmCorA in a symmetric, transport-incompetent conformation and loss of intracellular Mg2+ causes an asymmetric, potentially influx-competent conformation of the channel.