Régis Sperotto de Quadros
Universidade Federal de Pelotas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Régis Sperotto de Quadros.
Archive | 2011
Daniela Buske; M.T. Vilhena; C.F. Segatto; Régis Sperotto de Quadros
In the last few years there has been increased research interest in searching for analytical solutions for the advection–diffusion equation (ADE). By analytical we mean that no approximation is done along the derivation of the solution. There exists a significant literature regarding this theme. For illustration we mention the works of (Rounds 1955; Smith 1957; Scriven, Fisher 1975; Demuth 1978; van Ulden 1978; Nieuwstadt, de Haan 1981; Tagliazucca et al. 1985; Tirabassi 1989; Tirabassi, Rizza 1994; Sharan et al. 1996; Lin, Hildemann 1997; Tirabassi 2003). We note that in these works all solutions are valid for very specialized problems having specific wind and eddy diffusivities vertical profiles. Further, also in the literature there is the ADMM (Advection Diffusion Multilayer Method) approach which solves the two-dimensional ADE with variable wind profile and eddy diffusivity coefficient (Moreira et al. 2006). The main idea relies on the discretization of the Atmospheric Boundary Layer (ABL) in a multilayer domain, assuming in each layer that the eddy diffusivity and wind profile take averaged values. The resulting advection–diffusion equation in each layer is then solved by the Laplace transformation technique. For more details about this methodology see the review work done by (Moreira et al. 2006). We are also aware of the recent work of (Costa et al. 2006), dubbed as GIADMT method (Generalized Integral Advection Diffusion Multilayer Technique), which presented a general solution for the time-dependent three-dimensional ADE, again assuming the stepwise approximation for the eddy diffusivity coefficient and wind profile and proceeding further in similar way according the previous work. To avoid this approximation, in this work we report an analytical general solution for this problem, assuming that the eddy diffusivity coefficient and wind profile are arbitrary functions having a continuous dependence on the vertical and longitudinal variables. Without losing generality we specialize the application in micrometeorology, specially for the problem of simulation of contaminant releasing in the ABL.
Proceeding Series of the Brazilian Society of Computational and Applied Mathematics | 2018
Viliam Cardoso da Silveira; Daniela Buske; Gervásio Annes Degrazia; Régis Sperotto de Quadros
O objetivo desse trabalho e avaliar o comportamento da pluma de poluentes para a regiao onde o experimento INEL foi realizado. [...]
Ciência e Natura | 2018
Guilherme Jahnecke Weymar; Daniela Buske; Régis Sperotto de Quadros; Jonas C. Carvalho
This work presents an analytical representation for a dispersion model of pollutants that considers the chemical reaction, the model uses the three-dimensional advection-diffusion equation to describe the concentration field in the atmospheric boundary layer and to represent the chemical reaction that the pollutant suffers is included a source term in the equation. To solve the problem we use the modified Adomian Decomposition method associated with the 3D-GILTT method. The model was applied to simulate the dispersion and transportation of the
Proceeding Series of the Brazilian Society of Computational and Applied Mathematics | 2017
Everson da Silva; Marco T. Vilhena; Daniela Buske; Régis Sperotto de Quadros; Tiziano Tirabassi
SO_2
Proceeding Series of the Brazilian Society of Computational and Applied Mathematics | 2017
Juliana Ávila Contreira; Daniela Buske; Régis Sperotto de Quadros; Guilherme Jahnecke Weymar; Marco T. Vilhena
(sulfur dioxide), a pollutant produced from the burning of mineral coal, emitted by the Presidente Medici thermoelectric plant, located in Candiota / RS. With the analysis of the results it can be observed that the concentrations generated by the model are satisfactory and that the approach used is a new proposal for the description of the concentration field of a substance.
Proceeding Series of the Brazilian Society of Computational and Applied Mathematics | 2017
Jéssica Reis; Jonas C. Carvalho; Daniela Buske; Régis Sperotto de Quadros
O presente trabalho refere-se ao problema de dispersao de poluentes na atmosfera com a emissao realizada atraves de uma fonte movel. Para representar este fenomeno, apresenta-se um novo modelo matematico que utiliza a equacao da adveccao-difusao. Resolve-se esta equacao atraves do metodo GILTT (Generalized Integral Laplace Transform Technique) e utiliza-se o experimento de OLAD (Over-Land Atmospheric Dispersion) para simulacao. Os resultados obtidos ressaltam a capacidade do modelo em representar o comportamento da dispersao presente no experimento.
Proceeding Series of the Brazilian Society of Computational and Applied Mathematics | 2017
Jorge L. B. Ribes; Willian Silva Barros; Régis Sperotto de Quadros; Daniela Buske; Elisia Rodrigues Corrêa; Maicon Nardino
Neste trabalho e desenvolvida uma metodologia totalmente analitica com a finalidade de calcular o fluxo de calor nao-estacionario em paredes externas de edificacoes. Esta aplicacao e de grande importancia nos calculos de carga termica de ambientes com a finalidade de um dimensionamento adequado de sistemas de ar condicionado. Para tornar o modelo mais realista, utiliza-se uma parede composta por diferentes materiais para o estudo em questao. A distribuicao de temperaturas no interior da parede e obtida resolvendo a equacao diferencial parcial da difusao em solidos atraves do metodo de separacao de variaveis. O modelo foi aplicado para simular a transferencia de calor em uma parede de vinte e cinco centimetros de espessura e composta por cinco camadas, apresentando resultados validos para descrever o gradiente de temperaturas, tornando possivel a analise em cada ponto do elemento.
Ciência e Natura | 2016
Daniela Buske; Claudio Zen Petersen; Régis Sperotto de Quadros; Glênio Gonçalves; Juliana Ávila Contreira
Neste estudo, um modelo analitico Euleriano foi utilizado para similar a concentracao de poluentes emitidos a partir de uma fonte pontual continua durante o periodo de transicao dia-noite. A analise aplica-se ao modelo de dispersao parametrizado por coeficientes de difusao da camada limite estavel e camada residual. As simulacoes da concentracao foram realizadas considerando diferentes tempos no processo de transicao durante o por do sol. Os resultados apresentados neste artigo mostram similaridade com aqueles encontrados na literatura onde a acao da mistura turbulenta gerada pelo decaimento da energia convectiva na camada residual causa uma transferencia efetiva dos poluentes para o interior da camada limite estavel.
Proceeding Series of the Brazilian Society of Computational and Applied Mathematics | 2015
Renata Cezimbra; Daniela Buske; Régis Sperotto de Quadros; Fabrício Harter
Este trabalho baseia-se na analise estatistica dos resultados obtidos no desenvolvimento analitico das equacoes de adveccao-difusao utilizando-se a combinacao da Transformada de Laplace e da tecnica GILTT. Os resultados obtidos pelos modelos bidimensional estacionario e transiente e tridimensional aproximado, utilizando os dados do experimento de Copenhagen, foram analisados. As analises estatisticas realizadas mostram que o modelo proposto e eficaz para a predicao da concentracao de poluentes utilizando o conjunto de dados do experimento de Copenhagen
Proceeding Series of the Brazilian Society of Computational and Applied Mathematics | 2015
Renata Oliveira; Régis Sperotto de Quadros; Fabrício Harter; Guilherme Jahnecke Weymar
In this paper, we present a convergence analysis of the GILTT method for pollutant dispersion problems consolidating the solution of the problem in analytical representation. There have been many advances in the GILTT technique over the past few years. The advection-diffusion equation was solved for the multidimensional case and applied to various situations, mainly in pollutant dispersion. The theorem of Cauchy-Kowalewsky guarantees the existence and uniqueness of an analytic solution for the advection-diffusion equation. In this paper, we present a convergence analysis for the GILTT method to pollutant dispersion problems. Numerical results are presented.