Regula Rupp
University of Tübingen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Regula Rupp.
BMC Bioinformatics | 2007
Daniel H. Huson; Daniel C. Richter; Christian Rausch; Tobias Dezulian; Markus Franz; Regula Rupp
BackgroundResearch in evolution requires software for visualizing and editing phylogenetic trees, for increasingly very large datasets, such as arise in expression analysis or metagenomics, for example. It would be desirable to have a program that provides these services in an effcient and user-friendly way, and that can be easily installed and run on all major operating systems. Although a large number of tree visualization tools are freely available, some as a part of more comprehensive analysis packages, all have drawbacks in one or more domains. They either lack some of the standard tree visualization techniques or basic graphics and editing features, or they are restricted to small trees containing only tens of thousands of taxa. Moreover, many programs are diffcult to install or are not available for all common operating systems.ResultsWe have developed a new program, Dendroscope, for the interactive visualization and navigation of phylogenetic trees. The program provides all standard tree visualizations and is optimized to run interactively on trees containing hundreds of thousands of taxa. The program provides tree editing and graphics export capabilities. To support the inspection of large trees, Dendroscope offers a magnification tool. The software is written in Java 1.4 and installers are provided for Linux/Unix, MacOS X and Windows XP.ConclusionDendroscope is a user-friendly program for visualizing and navigating phylogenetic trees, for both small and large datasets.
Archive | 2010
Daniel H. Huson; Regula Rupp; Celine Scornavacca
In the previous chapter we give a brief introduction to phylogenetic trees. Phylogenetic networks provide an alternative to phylogenetic trees and may be more suitable for datasets whose evolution involve significant amounts of reticulate events caused by hybridization, horizontal gene transfer, recombination, gene conversion or gene duplication and loss [56, 61, 89, 201, 219, 231]. Moreover, even for a set of taxa that have evolved according to a tree-based model of evolution, phylogenetic networks can be usefully employed to explicitly represent conflicts in a dataset that may, for example, be due to mechanisms such as incomplete lineage sorting or to inadequacies of an assumed evolutionary model [125]. While rooted phylogenetic networks can, in theory, be used to explicitly describe evolution in the presence of reticulate events, their calculation is difficult and computational methods for doing so have not yet matured into practical and widely used tools [24, 98, 106, 127, 225, 237]. In contrast, there are a number of established tools for computing unrooted phylogenetic networks, which can be used to visualize incompatible evolutionary scenarios in phylogeny and phylogeography [9, 10, 11, 32, 52, 122, 125]. In practice, most currently available algorithms for computing phylogenetic networks are based on combinatorics and this book focuses on such approaches. Some approaches developed within a maximum-parsimony or maximum-likelihood framework can be found, for example, in [59, 106, 141, 142, 143, 228]. In this chapter, we give an introduction to the topic of phylogenetic networks, very briefly describing the fundamental concepts and summarizing some of the most important methods that are available for the computation of phylogenetic networks.
Bioinformatics | 2009
Daniel H. Huson; Regula Rupp; Vincent Berry; Philippe Gambette; Christophe Paul
Motivation: Developing methods for computing phylogenetic networks from biological data is an important problem posed by molecular evolution and much work is currently being undertaken in this area. Although promising approaches exist, there are no tools available that biologists could easily and routinely use to compute rooted phylogenetic networks on real datasets containing tens or hundreds of taxa. Biologists are interested in clades, i.e. groups of monophyletic taxa, and these are usually represented by clusters in a rooted phylogenetic tree. The problem of computing an optimal rooted phylogenetic network from a set of clusters, is hard, in general. Indeed, even the problem of just determining whether a given network contains a given cluster is hard. Hence, some researchers have focused on topologically restricted classes of networks, such as galled trees and level-k networks, that are more tractable, but have the practical draw-back that a given set of clusters will usually not possess such a representation. Results: In this article, we argue that galled networks (a generalization of galled trees) provide a good trade-off between level of generality and tractability. Any set of clusters can be represented by some galled network and the question whether a cluster is contained in such a network is easy to solve. Although the computation of an optimal galled network involves successively solving instances of two different NP-complete problems, in practice our algorithm solves this problem exactly on large datasets containing hundreds of taxa and many reticulations in seconds, as illustrated by a dataset containing 279 prokaryotes. Availability: We provide a fast, robust and easy-to-use implementation of this work in version 2.0 of our tree-handling software Dendroscope, freely available from http://www.dendroscope.org. Contact: [email protected]
Bioinformatics | 2010
Leo van Iersel; Steven Kelk; Regula Rupp; Daniel H. Huson
Phylogenetic trees are widely used to display estimates of how groups of species are evolved. Each phylogenetic tree can be seen as a collection of clusters, subgroups of the species that evolved from a common ancestor. When phylogenetic trees are obtained for several datasets (e.g. for different genes), then their clusters are often contradicting. Consequently, the set of all clusters of such a dataset cannot be combined into a single phylogenetic tree. Phylogenetic networks are a generalization of phylogenetic trees that can be used to display more complex evolutionary histories, including reticulate events, such as hybridizations, recombinations and horizontal gene transfers. Here, we present the new Cass algorithm that can combine any set of clusters into a phylogenetic network. We show that the networks constructed by Cass are usually simpler than networks constructed by other available methods. Moreover, we show that Cass is guaranteed to produce a network with at most two reticulations per biconnected component, whenever such a network exists. We have implemented Cass and integrated it into the freely available Dendroscope software. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.
workshop on algorithms in bioinformatics | 2008
Daniel H. Huson; Regula Rupp
The result of a multiple gene tree analysis is usually a number of different tree topologies that are each supported by a significant proportion of the genes. We introduce the concept of a cluster network that can be used to combine such trees into a single rooted network, which can be drawn either as a cladogram or phylogram. In contrast to split networks, which can grow exponentially in the size of the input, cluster networks grow only quadratically. A cluster network is easily computed using a modification of the tree-popping algorithm, which we call network-popping. The approach has been implemented as part of the Dendroscope tree-drawing program and its application is illustrated using data and results from three recent studies on large numbers of gene trees.
Archive | 2011
Daniel H. Huson; Regula Rupp; Celine Scornavacca
Archive | 2010
Daniel H. Huson; Regula Rupp; Celine Scornavacca
Archive | 2010
Daniel H. Huson; Regula Rupp; Celine Scornavacca
Archive | 2010
Daniel H. Huson; Regula Rupp; Celine Scornavacca
Archive | 2010
Daniel H. Huson; Regula Rupp; Celine Scornavacca