Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reid H. J. Olsen is active.

Publication


Featured researches published by Reid H. J. Olsen.


Radiation Research | 2013

Early Effects of Whole-Body 56Fe Irradiation on Hippocampal Function in C57BL/6J Mice

Gwendolen E. Haley; Lauren A. Yeiser; Reid H. J. Olsen; Matthew J. Davis; Lance A. Johnson; Jacob Raber

Relatively little is known about early irradiation effects on hippocampal function in wild-type mice. In this study, the effects of 56Fe irradiation on hippocampal function were assessed starting 2 weeks after whole-body irradiation. Compared to sham irradiation, radiation impaired novel object recognition in female and male C57BL/6J wild-type mice. There were no effects of irradiation on contextual fear conditioning or spatial memory retention in the water maze. It is possible that oxidative damage might contribute to radiation-induced cognitive changes. Therefore, hippocampal and cortical levels of 3-nitrotyrosine (3NT) and lipid peroxidation, measures of oxidative damage were assessed. There were no effects of irradiation on these measures of oxidative damage. As 56Fe irradiation can increase reactive oxygen species (ROS) levels, which may contribute to the impairments in novel object recognition, the effects of the antioxidant alpha-lipoic acid (ALA) on cognition following sham irradiation and irradiation were also assessed. ALA did not prevent radiation-induced impairments in novel object recognition and impaired spatial memory retention of sham-irradiated and irradiated mice in the probe trial after the first day of hidden platform training in the water maze. Thus, the novel object recognition test is particularly sensitive to detect early cognitive effects of 56Fe irradiation through a mechanism unlikely involving ROS or oxidative damage.


Journal of Neurochemistry | 2013

Enhanced hippocampus-dependent memory and reduced anxiety in mice over-expressing human catalase in mitochondria

Reid H. J. Olsen; Lance A. Johnson; Damian G. Zuloaga; Charles L. Limoli; Jacob Raber

Oxidative stress (OS) and reactive oxygen species (ROS) play a modulatory role in synaptic plasticity and signaling pathways. Mitochondria (MT), a major source of ROS because of their involvement in energy metabolism, are important for brain function. MT‐generated ROS are proposed to be responsible for a significant proportion of OS and are associated with developmental abnormalities and aspects of cellular aging. The role of ROS and MT function in cognition of healthy individuals is relatively understudied. In this study, we characterized behavioral and cognitive performance of 5‐ to 6‐month‐old mice over‐expressing mitochondrial catalase (MCAT). MCAT mice showed enhancements in hippocampus‐dependent spatial learning and memory in the water maze and contextual fear conditioning, and reduced measures of anxiety in the elevated zero maze. Catalase activity was elevated in MCAT mice in all brain regions examined. Measures of oxidative stress (glutathione, protein carbonyl content, lipid peroxidation, and 8‐hydroxyguanine) did not significantly differ between the groups. The lack of differences in these markers of oxidative stress suggests that the differences observed in this study may be due to altered redox signaling. Catalase over‐expression might be sufficient to enhance cognition and reduce measures of anxiety even in the absence of alteration in levels of OS.


Brain Research | 2005

Role of circulating androgen levels in effects of apoE4 on cognitive function

Timothy Pfankuch; Angela Rizk; Reid H. J. Olsen; Cara Poage; Jacob Raber

Compared with apoE2 and E3, apoE4 increases the risk of cognitive impairments and of developing Alzheimers disease (AD). ApoE4 interacts with female sex, further increasing AD risk. Previously, we showed that female Apoe-/- mice are more susceptible to apoE4-induced cognitive deficits than male mice. Androgens protect against these deficits and apoE4 male mice are more sensitive to acute blockade of androgen receptors than apoE3 male mice. To determine the chronic effects of reduced circulating androgen levels on susceptibility to the effects of apoE4 on cognitive function in males, we castrated and sham-castrated apoE4, apoE3, and Apoe-/- male mice and behaviorally compared them 3 months later. Castration impaired novel location recognition in apoE4, but not apoE3 or Apoe-/-, mice. In contrast, castration impaired novel object recognition and spatial memory retention in the water maze in Apoe-/-, but not apoE3 or apoE4, mice. On the contrary, castrated, but not sham-castrated, apoE4 mice showed improved acquisition over the first two hidden platform sessions and spatial memory retention in the first probe trial. While apoE3 and Apoe-/- mice increased their exploratory times with the objects in the trial with the novel object, apoE4 mice did not. ApoE4 mice required more trials than apoE3 or Apoe-/- mice to reach criterion during passive avoidance training, but castration did not modulate passive avoidance learning or memory. Thus, androgens have differential roles in object recognition and spatial learning and memory in the water maze, depending on whether or not apoE4 is present.


Neurobiology of Disease | 2014

Apolipoprotein E-low density lipoprotein receptor interaction affects spatial memory retention and brain ApoE levels in an isoform-dependent manner

Lance A. Johnson; Reid H. J. Olsen; Louise S. Merkens; Andrea E. DeBarber; Robert D. Steiner; Patrick M. Sullivan; Nobuyo Maeda; Jacob Raber

Human apolipoprotein E (apoE) exists in three isoforms: apoE2, apoE3 and apoE4. APOE ε4 is a major genetic risk factor for cardiovascular disease (CVD) and Alzheimers disease (AD). ApoE mediates cholesterol metabolism by binding various receptors. The low-density lipoprotein receptor (LDLR) has a high affinity for apoE, and is the only member of its receptor family to demonstrate an apoE isoform specific binding affinity (E4>E3>>E2). Evidence suggests that a functional interaction between apoE and LDLR influences the risk of CVD and AD. We hypothesize that the differential cognitive effects of the apoE isoforms are a direct result of their varying interactions with LDLR. To test this hypothesis, we have employed transgenic mice that express human apoE2, apoE3, or apoE4, and either human LDLR (hLDLR) or no LDLR (LDLR(-/-)). Our results show that plasma and brain apoE levels, cortical cholesterol, and spatial memory are all regulated by isoform-dependent interactions between apoE and LDLR. Conversely, both anxiety-like behavior and cued associative memory are strongly influenced by APOE genotype, but these processes appear to occur via an LDLR-independent mechanism. Both the lack of LDLR and the interaction between E4 and the LDLR were associated with significant impairments in the retention of long term spatial memory. Finally, levels of hippocampal apoE correlate with long term spatial memory retention in mice with human LDLR. In summary, we demonstrate that the apoE-LDLR interaction affects regional brain apoE levels, brain cholesterol, and cognitive function in an apoE isoform-dependent manner.


Genes, Brain and Behavior | 2012

ApoE isoform‐dependent deficits in extinction of contextual fear conditioning

Reid H. J. Olsen; Mati Agam; Matthew J. Davis; Jacob Raber

The three major human apoE isoforms (apoE2, apoE3 and apoE4) are encoded by distinct alleles (ϵ2, ϵ3 and ϵ4). Compared with ϵ3, ϵ4 is associated with increased risk to develop Alzheimers disease (AD), cognitive impairments in Parkinsons disease (PD), and other conditions. In contrast, a recent study indicated an increased susceptibility to the recurring and re-experiencing symptom cluster of Post-Traumatic Stress Disorder (PTSD), as well as related memory impairments, in patients carrying at least one ϵ2 allele. Contextual fear conditioning and extinction are used in human and animal models to study this symptom cluster. In this study, acquisition (day 1, training), consolidation (day 2, first day of re-exposure) and extinction (days 2-5) of conditioned contextual fear in human apoE2, apoE3 and apoE4 targeted replacement and C57BL/6J wild-type (WT) mice was investigated. Male and female apoE2 showed acquisition and retrieval of conditioned fear, but failed to exhibit extinction. In contrast, WT, apoE3 and apoE4 mice showed extinction. While apoE2 mice exhibited lower freezing in response to the context on day 2 than apoE3 and apoE4 mice, this cannot explain their extinction deficit as WT mice exhibited similar freezing levels as apoE2 mice on day 2 but still exhibited extinction. Elevating freezing through extended training preserved extinction in controls, but failed to ameliorate extinction deficits in apoE2 animals. These data along with clinical data showing an association of apoE2 with susceptibility to specific symptom clusters in PTSD supports an important role for apoE isoform in the extinction of conditioned fear.


Radiation Research | 2016

Effects of Proton and Combined Proton and 56Fe Radiation on the Hippocampus

Jacob Raber; Antiño R. Allen; Sourabh Sharma; Barrett Allen; Susanna Rosi; Reid H. J. Olsen; Matthew J. Davis; Massarra A. Eiwaz; John R. Fike; Gregory A. Nelson

The space radiation environment contains protons and 56Fe, which could pose a significant hazard to space flight crews during and after missions. The space environment involves complex radiation exposures, thus, the effects of a dose of protons might be modulated by a dose of heavy-ion radiation. The brain, and particularly the hippocampus, may be susceptible to space radiation-induced changes. In this study, we first determined the dose-response effect of proton radiation (150 MeV) on hippocampus-dependent cognition 1 and 3 months after exposure. Based on those results, we subsequently exposed mice to protons alone (150 MeV, 0.1 Gy), 56Fe alone (600 MeV/n, 0.5 Gy) or combined proton and 56Fe radiations (protons first) with the two exposures separated by 24 h. At one month postirradiation, all animal groups showed novel object recognition. However, at three months postirradiation, mice exposed to either protons or combined proton and 56Fe radiations showed impaired novel object recognition, which was not observed in mice irradiated with 56Fe alone. The mechanisms in these impairments might involve inflammation. In mice irradiated with protons alone or 56Fe alone three months earlier, there was a negative correlation between a measure of novel object recognition and the number of newly born activated microglia in the dentate gyrus. Next, cytokine and chemokine levels were assessed in the hippocampus. At one month after exposure the levels of IL-12 were higher in mice exposed to combined radiations compared with sham-irradiated mice, while the levels of IFN-γ were lower in mice exposed to 56Fe radiation alone or combined radiations. In addition, IL-4 levels were lower in 56Fe-irradiated mice compared with proton-irradiated mice and TNF-α levels were lower in proton-irradiated mice than in mice receiving combined radiations. At three months after exposure, macrophage-derived chemokine (MDC) and eotaxin levels were lower in mice receiving combined radiations. The levels of MDC and eotaxin correlated and the levels of MDC, but not eotaxin, correlated with the percentage of newly born activated microglia in the blades of the dentate gyrus. Finally, hippocampal IL-6 levels were higher in mice receiving combined radiations compared with mice receiving 56Fe radiation alone. These data demonstrate the sensitivity of novel object recognition for detecting cognitive injury three months after exposure to proton radiation alone, and combined exposure to proton and 56Fe radiations, and that newly-born activated microglia and inflammation might be involved in this injury.


Behavioural Brain Research | 2014

CD44 is required for spatial memory retention and sensorimotor functions.

Jacob Raber; Reid H. J. Olsen; Weiping Su; Scott Foster; Rubing Xing; Summer F. Acevedo; Larry S. Sherman

CD44 is a transmembrane receptor for the glycosaminoglycan hyaluronan, a component of the extracellular matrix. CD44 is expressed by neural stem/progenitor cells, astrocytes, and some neurons but its function in the central nervous system is unknown. To determine the role of CD44 in brain function, we behaviorally analyzed CD44-null (KO) and wild-type (WT) mice. KO mice showed increased activity levels in the light-dark test and a trend toward increased activity in the open field. In addition, KO mice showed impaired hippocampus-dependent spatial memory retention in the probe trial following the first hidden-platform training day in the Morris water maze: WT mice showed spatial memory retention and spent more time in the target quadrant than any other quadrant, while KO mice did not. Although there were no genotype differences in swim speeds during the water maze training sessions with the visible or hidden platform, sensorimotor impairments were seen in other behavioral tests. In the inclined screen and balance beam tests, KO mice moved less than WT mice. In the wire hang test, KO mice also fell off of the wire faster than WT mice. In contrast, there was no genotype difference when emotional learning and memory were assessed in the passive avoidance test. These data support an important role for CD44 in locomotor and sensorimotor functions, and in spatial memory retention.


Life sciences in space research | 2015

Combined exposure to protons and 56 Fe leads to overexpression of Il13 and reactivation of repetitive elements in the mouse lung

Etienne Nzabarushimana; Sara Prior; Isabelle R. Miousse; Rupak Pathak; Antiño R. Allen; John R. Latendresse; Reid H. J. Olsen; Jacob Raber; Martin Hauer-Jensen; Gregory A. Nelson; Igor Koturbash

Interest in deep space exploration underlines the needs to investigate the effects of exposure to combined sources of space radiation. The lung is a target organ for radiation, and exposure to protons and heavy ions as radiation sources may lead to the development of degenerative disease and cancer. In this study, we evaluated the pro-fibrotic and epigenetic effects of exposure to protons (150 MeV/nucleon, 0.1 Gy) and heavy iron ions ((56)Fe, 600 MeV/nucleon, 0.5 Gy) alone or in combination (protons on Day 1 and (56)Fe on Day 2) in C57BL/6 male mice 4 weeks after irradiation. Exposure to (56)Fe, proton or in combination, did not result in histopathological changes in the murine lung. At the same time, combined exposure to protons and (56)Fe resulted in pronounced molecular alterations in comparison with either source of radiation alone. Specifically, we observed a substantial increase in the expression of cytokine Il13, loss of expression of DNA methyltransferase Dnmt1, and reactivation of LINE-1, SINE B1 retrotransposons, and major and minor satellites. Given the deleterious potential of the observed effects that may lead to development of chronic lung injury, pulmonary fibrosis, and cancer, future studies devoted to the investigation of the long-term effects of combined exposures to proton and heavy ions are clearly needed.


Frontiers in Behavioral Neuroscience | 2014

Impairment in Extinction of Contextual and Cued Fear Following Post-Training Whole-Body Irradiation

Reid H. J. Olsen; Tessa Marzulla; Jacob Raber

Because of the use of radiation in cancer therapy, the risk of nuclear contamination from power plants, military conflicts, and terrorism, there is a compelling scientific and public health interest in the effects of environmental radiation exposure on brain function, in particular hippocampal function and learning and memory. Previous studies have emphasized changes in learning and memory following radiation exposure. These approaches have ignored the question of how radiation exposure might impact recently acquired memories, which might be acquired under traumatic circumstances (cancer treatment, nuclear disaster, etc.). To address the question of how radiation exposure might affect the processing and recall of recently acquired memories, we employed a fear conditioning paradigm wherein animals were trained, and subsequently irradiated (whole-body X-ray irradiation) 24 h later. Animals were given 2 weeks to recover, and were tested for retention and extinction of hippocampus-dependent contextual fear conditioning or hippocampus-independent cued fear conditioning. Exposure to irradiation following training was associated with reduced daily increases in body weights over the 22-days of the study and resulted in greater freezing levels and aberrant extinction 2 weeks later. This was also observed when the intensity of the training protocol was increased. Cued freezing levels and measures of anxiety 2 weeks after training were also higher in irradiated than sham-irradiated mice. In contrast to contextual freezing levels, cued freezing levels were even higher in irradiated mice receiving 5 shocks during training than sham-irradiated mice receiving 10 shocks during training. In addition, the effects of radiation on extinction of contextual fear were more profound than those on the extinction of cued fear. Thus, whole-body irradiation elevates contextual and cued fear memory recall.


Journal of Biological Chemistry | 2017

CD44 transmembrane receptor and hyaluronan regulate adult hippocampal neural stem cell quiescence and differentiation

Weiping Su; Scott Foster; Rubing Xing; Kerstin Feistel; Reid H. J. Olsen; Summer F. Acevedo; Jacob Raber; Larry S. Sherman

Adult neurogenesis in the hippocampal subgranular zone (SGZ) is involved in learning and memory throughout life but declines with aging. Mice lacking the CD44 transmembrane receptor for the glycosaminoglycan hyaluronan (HA) demonstrate a number of neurological disturbances including hippocampal memory deficits, implicating CD44 in the processes underlying hippocampal memory encoding, storage, or retrieval. Here, we found that HA and CD44 play important roles in regulating adult neurogenesis, and we provide evidence that HA contributes to age-related reductions in neural stem cell (NSC) expansion and differentiation in the hippocampus. CD44-expressing NSCs isolated from the mouse SGZ are self-renewing and capable of differentiating into neurons, astrocytes, and oligodendrocytes. Mice lacking CD44 demonstrate increases in NSC proliferation in the SGZ. This increased proliferation is also observed in NSCs grown in vitro, suggesting that CD44 functions to regulate NSC proliferation in a cell-autonomous manner. HA is synthesized by NSCs and increases in the SGZ with aging. Treating wild type but not CD44-null NSCs with HA inhibits NSC proliferation. HA digestion in wild type NSC cultures or in the SGZ induces increased NSC proliferation, and CD44-null as well as HA-disrupted wild type NSCs demonstrate delayed neuronal differentiation. HA therefore signals through CD44 to regulate NSC quiescence and differentiation, and HA accumulation in the SGZ may contribute to reductions in neurogenesis that are linked to age-related decline in spatial memory.

Collaboration


Dive into the Reid H. J. Olsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shane T. Mueller

Michigan Technological University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antiño R. Allen

University of Arkansas for Medical Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge