Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reid Huber is active.

Publication


Featured researches published by Reid Huber.


Journal of Clinical Investigation | 2006

CCR2 modulates inflammatory and metabolic effects of high-fat feeding

Stuart P. Weisberg; Deborah Hunter; Reid Huber; Jacob Lemieux; Sarah Slaymaker; Kris Vaddi; Israel F. Charo; Rudolph L. Leibel; Anthony W. Ferrante

The C-C motif chemokine receptor-2 (CCR2) regulates monocyte and macrophage recruitment and is necessary for macrophage-dependent inflammatory responses and the development of atherosclerosis. Although adipose tissue expression and circulating concentrations of CCL2 (also known as MCP1), a high-affinity ligand for CCR2, are elevated in obesity, the role of CCR2 in metabolic disorders, including insulin resistance, hepatic steatosis, and inflammation associated with obesity, has not been studied. To determine what role CCR2 plays in the development of metabolic phenotypes, we studied the effects of Ccr2 genotype on the development of obesity and its associated phenotypes. Genetic deficiency in Ccr2 reduced food intake and attenuated the development of obesity in mice fed a high-fat diet. In obese mice matched for adiposity, Ccr2 deficiency reduced macrophage content and the inflammatory profile of adipose tissue, increased adiponectin expression, ameliorated hepatic steatosis, and improved systemic glucose homeostasis and insulin sensitivity. In mice with established obesity, short-term treatment with a pharmacological antagonist of CCR2 lowered macrophage content of adipose tissue and improved insulin sensitivity without significantly altering body mass or improving hepatic steatosis. These data suggest that CCR2 influences the development of obesity and associated adipose tissue inflammation and systemic insulin resistance and plays a role in the maintenance of adipose tissue macrophages and insulin resistance once obesity and its metabolic consequences are established.


Diabetes Care | 2010

The 11-β-Hydroxysteroid Dehydrogenase Type 1 Inhibitor INCB13739 Improves Hyperglycemia in Patients With Type 2 Diabetes Inadequately Controlled by Metformin Monotherapy

Julio Rosenstock; Salomon Banarer; Vivian Fonseca; Silvio E. Inzucchi; William Sun; Wenqing Yao; Gregory Hollis; Robert Flores; Richard S. Levy; William V. Williams; Jonathan R. Seckl; Reid Huber

OBJECTIVE 11-β-hydroxysteroid dehydrogenase type 1 (11βHSD1) converts inactive cortisone into active cortisol, thereby amplifying intracellular glucocorticoid action. The efficacy and safety of the 11βHSD1 inhibitor INCB13739 were assessed when added to ongoing metformin monotherapy in patients with type 2 diabetes exhibiting inadequate glycemic control (A1C 7–11%). RESEARCH DESIGN AND METHODS This double-blind placebo-controlled paralleled study randomized 302 patients with type 2 diabetes (mean A1C 8.3%) on metformin monotherapy (mean 1.5 g/day) to receive one of five INCB13739 doses or placebo once daily for 12 weeks. The primary end point was the change in A1C at study end. Other end points included changes in fasting glucose, lipids, weight, adverse events, and safety. RESULTS After 12 weeks, 200 mg of INCB13739 resulted in significant reductions in A1C (−0.6%), fasting plasma glucose (−24 mg/dl), and homeostasis model assessment–insulin resistance (HOMA-IR) (−24%) compared with placebo. Total cholesterol, LDL cholesterol, and triglycerides were all significantly decreased in hyperlipidemic patients. Body weight decreased relative to placebo after INCB13739 therapy. A reversible dose-dependent elevation in adrenocorticotrophic hormone, generally within the normal reference range, was observed. Basal cortisol homeostasis, testosterone in men, and free androgen index in women were unchanged by INCB13739. Adverse events were similar across all treatment groups. CONCLUSIONS INCB13739 added to ongoing metformin therapy was efficacious and well tolerated in patients with type 2 diabetes who had inadequate glycemic control with metformin alone. 11βHSD1 inhibition offers a new potential approach to control glucose and cardiovascular risk factors in type 2 diabetes.


Journal of Immunology | 2005

Discovery and Pharmacological Characterization of a Novel Rodent-Active CCR2 Antagonist, INCB3344

Carrie M. Brodmerkel; Reid Huber; Maryanne Covington; Sharon Diamond; Leslie Hall; Robert Collins; Lynn Leffet; Karen Gallagher; Patricia Feldman; Paul Collier; Mark Stow; Xiaomei Gu; Frédéric Baribaud; Niu Shin; Beth Thomas; Tim Burn; Greg Hollis; Swamy Yeleswaram; Kim Solomon; Steve Friedman; Anlai Wang; Chu Biao Xue; Robert Newton; Peggy Scherle; Kris Vaddi

This report describes the characterization of INCB3344, a novel, potent and selective small molecule antagonist of the mouse CCR2 receptor. The lack of rodent cross-reactivity inherent in the small molecule CCR2 antagonists discovered to date has precluded pharmacological studies of antagonists of this receptor and its therapeutic relevance. In vitro, INCB3344 inhibits the binding of CCL2 to mouse monocytes with nanomolar potency (IC50 = 10 nM) and displays dose-dependent inhibition of CCL2-mediated functional responses such as ERK phosphorylation and chemotaxis with similar potency. Against a panel of G protein-coupled receptors that includes other CC chemokine receptors, INCB3344 is at least 100-fold selective for CCR2. INCB3344 possesses good oral bioavailability and systemic exposure in rodents that allows in vivo pharmacological studies. INCB3344 treatment results in a dose-dependent inhibition of macrophage influx in a mouse model of delayed-type hypersensitivity. The histopathological analysis of tissues from the delayed-type hypersensitivity model demonstrates that inhibition of CCR2 leads to a substantial reduction in tissue inflammation, suggesting that macrophages play an orchestrating role in immune-based inflammatory reactions. These results led to the investigation of INCB3344 in inflammatory disease models. We demonstrate that therapeutic dosing of INCB3344 significantly reduces disease in mice subjected to experimental autoimmune encephalomyelitis, a model of multiple sclerosis, as well as a rat model of inflammatory arthritis. In summary, we present the first report on the pharmacological characterization of a selective, potent and rodent-active small molecule CCR2 antagonist. These data support targeting this receptor for the treatment of chronic inflammatory diseases.


Cancer Biology & Therapy | 2006

Identification of ADAM10 as a major source of HER2 ectodomain sheddase activity in HER2 overexpressing breast cancer cells

Phillip Liu; Xiangdong Liu; Yanlong Li; Maryanne B. Covington; Richard Wynn; Reid Huber; Milton Hillman; Dawn Ellis; Cindy Marando; Kamna Katiyar; Jodi D. Bradley; Kenneth Abremski; Mark Stow; Mark Rupar; Jincong Zhuo; Yun-Long Li; Qiyan Lin; David M. Burns; Meizhong Xu; Colin Zhang; Ding-Quan Qian; Chunhong He; Vaqar Sharief; Lingkai Weng; Costas Agrios; Eric Shi; Brian Walter Metcalf; Robert Newton; Steven M. Friedman; Wenqing Yao

ALL AUTHORS: Phillip C.C. Liu, Xiangdong Liu, Yanlong Li, Maryanne Covington, Richard Wynn, Reid Huber, Milton Hillman, Gengjie Yang, Dawn Ellis, Cindy Marando, Kamna Katiyar, Jodi Bradley, Kenneth Abremski, Mark Stow, Mark Rupar, Jincong Zhuo, Yun-Long Li, Qiyan Lin, David Burns, Meizhong Xu, Colin Zhang, Ding-Quan Qian, Chunhong He, Vaqar Sharief, Lingkai Weng, Costas Agrios, Eric Shi, Brian Metcalf, Robert Newton, Steven Friedman, Wenqing Yaol, Peggy Scherlel, Gregory Hollis, Timothy C. Burn Overexpression and activating mutations of ErbB family members have been implicated in the development and progression of a variety of tumor types. Cleavage of the HER2 receptor by an as yet unidentified ectodomain sheddase has been shown to liberate the HER2 extracellular domain (ECD) leaving a fragment with constitutive kinase activity that can provide ligand-independent growth and survival signals to the cell. This process is clinically relevant since HER2 ECD serum levels in metastatic breast cancer patients are associated with a poorer prognosis. Thus, inhibition of the HER2 sheddase may provide a novel therapeutic approach for breast cancer. We describe the use of transcriptional profiling, pharmacological and in vitro approaches to identify the major source of HER2 sheddase activity. Real-time PCR was used to identify those ADAM family members which were expressed in HER2 shedding cell lines. siRNAs that selectively inhibited ADAM10 expression reduced HER2 shedding. In addition, we profiled over 1000 small molecules for in vitro inhibition of a panel of ADAM and MMP proteins; a positive correlation was observed only between ADAM10 inhibition and reduction of HER2 ECD shedding in a cell based assay. Finally, in vitro studies demonstrate that in combination with low doses of Herceptin, selective ADAM10 inhibitors decrease proliferation in HER2 overexpressing cell lines while inhibitors, that do not inhibit ADAM10, have no impact. These results are consistent with ADAM10 being a major determinant of HER2 shedding, the inhibition of which, may provide a novel therapeutic approach for treating a variety of cancers with active HER2 signaling.


Blood | 2015

The effect of long-term ruxolitinib treatment on JAK2p.V617F allele burden in patients with myelofibrosis

Michael W. Deininger; Jerald P. Radich; Timothy Burn; Reid Huber; Dilan Paranagama; Srdan Verstovsek

The JAK2 c.1849G>T (p.V617F) mutation leads to constitutive activation of Janus kinase (JAK)2 and contributes to dysregulated JAK signaling in myelofibrosis (MF), polycythemia vera (PV), and essential thrombocythemia (ET). In the phase 3 Controlled Myelofibrosis Study with Oral JAK Inhibitor Treatment-I trial, patients with MF, post-PV MF, or post-ET MF achieved significant reductions in splenomegaly and improvements in symptoms with ruxolitinib vs placebo at week 24. This long-term follow-up analysis was performed to determine whether ruxolitinib therapy altered the JAK2p.V617F allele burden in JAK2p.V617F-positive patients. Assessments at baseline and weeks 24, 48, 120, 144, 168, and 216 demonstrated reductions in allele burden from baseline with ruxolitinib treatment that correlated with spleen volume reductions. Of 236 JAK2p.V617F-positive patients analyzed, 20 achieved partial and 6 achieved complete molecular responses, with median times to response of 22.2 and 27.5 months, respectively. Allele burden reductions were greater in patients with shorter disease duration, which suggests a potential benefit of earlier treatment. This trial was registered at www.clinicaltrials.gov as #NCT00952289.


Genetic Testing and Molecular Biomarkers | 2013

Validation of standards for quantitative assessment of JAK2 c.1849G>T (p.V617F) allele burden analysis in clinical samples.

Paul Collier; Keyur P. Patel; Paul Waeltz; Mark Rupar; Rajyalakshmi Luthra; Phillip Liu; Gregory Hollis; Reid Huber; Srdan Verstovsek; Timothy Burn

The substitution of valine with phenylalanine at amino acid 617 of the Janus kinase 2 (JAK2) gene (JAK2 p.V617F) occurs in a high proportion of patients with myeloproliferative neoplasms (MPNs). The ability to accurately measure JAK2 p.V617F allele burden is of great interest given the diagnostic relevance of the mutation and the ongoing clinical evaluation of JAK inhibitors. A main hurdle in developing quantitative assays for allele burden measurement is the unavailability of accurate standards for both assay validation and use in a standard curve for quantification. We describe our approach to the validation of standards for quantitative assessment of JAK2 p.V617F allele burden in clinical MPN samples. These standards were used in two JAK2 p.V617F assays, which were used to support clinical studies of ruxolitinib (Jakafi(®)) in myelofibrosis, a real-time polymerase chain reaction assay for initial screening of all samples, and a novel single-nucleotide polymorphism typing (SNaPshot)-based assay for samples with less than 5% mutant allele burden. Comparisons of allele burden data from clinical samples generated with these assays show a high degree of concordance with each other and with a pyrosequencing-based assay used for clinical reporting from an independent laboratory, thus providing independent validation to the accuracy of these standards.


Cancer Research | 2015

Abstract 1336: Novel immunotherapeutic activity of JAK and PI3Kδ inhibitors in a model of pancreatic cancer

Holly Koblish; Michael Hansbury; Liang-Chuan S. Wang; Taisheng Huang; Chu-Biao Xue; Yun-Long Li; Eddy W. Yue; Andrew P. Combs; Wenqing Yao; Reid Huber; Peggy Scherle

Immunotherapeutic agents are emerging as key components of efficacious multi-agent regimens in cancer. The majority of immunotherapeutic agents developed thus far either attempt to stimulate a more productive anti-tumoral immune response or to inhibit key proteins in the immunosuppressive tumoral milieu. In contrast, agents targeting signal transduction molecules have been largely developed for their ability to impact the proliferative potential of tumor cells directly. Notably, the JAK/STAT and PI3Kδ signaling pathways have been shown to contribute not only to tumor cell proliferation and survival but also to play a crucial role in regulating stromal cells, including immune cells, which are recruited to the tumor microenvironment. Activation of these pathways has been shown to result in the recruitment and expansion of predominantly negative regulatory cells such as myeloid derived suppressor cells and regulatory T cells, suggesting that inhibition of JAK/STAT and PI3Kδ signaling may promote antitumor immunity. Therefore, we have examined the immunotherapeutic potential of selective inhibitors of either JAK or PI3Kδ. We demonstrate that inhibitors of either JAK or PI3Kδ block tumor growth as single agents in the immuno-competent syngeneic PAN02 pancreatic model, which is not driven by oncogenic JAK or PI3K signaling. Tumor growth inhibition is not observed in immunocompromised mice, demonstrating that the anti-tumor effects of these agents require an intact immune system. These agents were tested pairwise with each other and in combination with other immune checkpoint modulators, including an anti-PD-L1 antibody and the IDO1 inhibitor INCB24360. The combinations of JAK inhibition with IDO1 inhibition, PI3Kδ inhibition or PD-1/PD-L1 blockade resulted in enhanced efficacy. Mechanistic studies revealed that the combination of JAK and IDO1 inhibition did not alter the number of infiltrating T cells within the tumor, but instead resulted in a more activated phenotype of the infiltrating T cells, leading to higher levels of IFNγ production. In contrast, combination treatment with regimens that included an inhibitor to PI3Kδ led to a marked increase in the numbers of T cell infiltrates, although the cells were not maximally activated. Further studies to understand the complex cellular responses elicited by these inhibitors may provide the mechanistic rationale to explore JAK or PI3Kδ inhibitor-based immunotherapy combinations in the clinic. Citation Format: Holly K. Koblish, Michael Hansbury, Liang-Chuan S. Wang, Gengjie Yang, Taisheng Huang, Chu-Biao Xue, Yun-Long Li, Eddy Yue, Andrew Combs, Wenqing Yao, Reid Huber, Peggy Scherle. Novel immunotherapeutic activity of JAK and PI3Kδ inhibitors in a model of pancreatic cancer. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 1336. doi:10.1158/1538-7445.AM2015-1336


Cancer Research | 2016

Abstract 3204: INCAGN01949: an anti-OX40 agonist antibody with the potential to enhance tumor-specific T-cell responsiveness, while selectively depleting intratumoral regulatory T cells

Ana Maria Gonzalez; Mariana Manrique; Ekaterina Breous; David Savitsky; Jeremy Waight; Randi Gombos; Yuqi Liu; Shiwen Lin; Taha Merghoub; Daniel Hirschhorn-Cymerman; Gerd Ritter; Jedd D. Wolchok; Peggy Scherle; Gregory Hollis; Reid Huber; Marc Van Dijk; Robert Stein; Nicholas Wilson

OX40 (CD134, TNFRSF4) is a T cell co-stimulatory receptor that potentiates T cell receptor (TCR) signaling during CD4+ and CD8+ T cell priming, effector cell differentiation and memory T cell recall responses. In preclinical mouse tumor models, surrogate anti-OX40 agonist antibodies have shown remarkable single agent anti-tumor efficacy, as well as the ability to combine effectively with other immunomodulatory antibodies and immune education strategies, such as therapeutic cancer vaccines. Agonistic antibodies targeting OX40 are predicted to counteract the immunosuppressive tumor microenvironment and promote tumor-specific T cell immunity via two primary mechanisms: 1) binding and activating OX40 signaling in tumor-specific effector and memory T cells, thereby enhancing their responsiveness to tumor-associated antigens, and 2) co-engaging Fcγ receptors expressed by tumor-associated effector cells, and facilitating the selective depletion of intratumoral regulatory T cells. INCAGN01949 is a novel fully human IgG1 monoclonal antibody identified using the Retrocyte Display™ platform that is being developed for the treatment of advanced malignancies. INCAGN01949 recognizes human and cynomolgus monkey OX40 with comparable binding affinity. INCAGN01949 has been optimized to potently mediate receptor forward signaling under conditions of suboptimal TCR stimulation, leading to features like enhanced production of TNFα and IFNγ, and concomitant suppression of IL-10. INCAGN01949 achieves this functionality through OX40 clustering and downstream activation of the NFκB pathway in T cells, which is sustained across a broad range of antibody concentrations. Consistent with mouse preclinical tumor models, OX40 was found to be selectively overexpressed by intratumoral regulatory T cells from a variety of primary human tumor samples. Commensurate with its human IgG1 Fc region, INCAGN01949 can effectively co-engage activating Fcγ receptors on immune effector cells, including natural killer cells and macrophages. Therefore INCAGN01949 has the potential to mediate selective effector cell activity toward intratumoral populations of regulatory T cells. The biophysical and functional attributes of INCAGN01949 make it suited for clinical development, both as a single agent and in combination with other immunomodulatory antibodies or immune education strategies. Citation Format: Ana Maria Gonzalez, Mariana L. Manrique, Ekaterina Breous, David Savitsky, Jeremy Waight, Randi Gombos, Yuqi Liu, Shiwen Lin, Taha Merghoub, Daniel Hirschhorn-Cymerman, Gerd Ritter, Jedd Wolchok, Peggy Scherle, Gregory Hollis, Reid Huber, Marc Van Dijk, Robert Stein, Nicholas S. Wilson. INCAGN01949: an anti-OX40 agonist antibody with the potential to enhance tumor-specific T-cell responsiveness, while selectively depleting intratumoral regulatory T cells. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 3204.


Cancer Research | 2015

Abstract 3523: Discovery of a novel BET inhibitor INCB054329

Phillip Liu; Xuesong Mike Liu; Matthew C. Stubbs; Thomas Maduskuie; Richard B. Sparks; Nina Zolotarjova; Jun Li; Xiaoming Wen; Margaret Favata; Patricia Feldman; Alla Volgina; Darlise DiMatteo; Robert Collins; Nikoo Falahatpisheh; Padmaja Polam; Yu Li; Maryanne Covington; Sharon Diamond-Fosbenner; Richard Wynn; Timothy Burn; Kris Vaddi; Swamy Yeleswaram; Andrew P. Combs; Wenqing Yao; Reid Huber; Peggy Scherle; Gregory Hollis

Bromodomains (BD) are protein modules that bind acetylated lysine residues and are components of many epigenetic modifiers and transcription factors. The BET (Bromodomain and extra-terminal) family is composed of four members each harboring two tandem BDs. BET proteins are critical regulators of transcription through interactions with complexes including Mediator and p-TEFb at gene promoter and enhancer elements. Studies using genetic knockdown and small molecule inhibitors have demonstrated that targeting BET proteins is therapeutic in models of cancer and acute inflammation. We describe the preclinical activity of a novel BET inhibitor INCB054329 for the potential treatment of malignant diseases. INCB054329 inhibited binding of BRD2, BRD3 and BRD4 to an acetylated histone H4 peptide with low nanomolar potency. In myeloma cell lines, treatment with INCB054329 inhibited expression of c-MYC and induced HEXIM1. The majority of myeloma, AML, and lymphoma cell lines tested were growth inhibited by INCB054329 with potencies less than 200 nM. Selectivity was seen when compared with nontransformed cells as the potency for growth inhibition of IL-2 stimulated T-cells from normal donors was greater than 1300 nM. Cell cycle analysis revealed treatment-induced G1 arrest. Furthermore in both AML and lymphoma cell lines, INCB054329 induced apoptosis consistent with increased expression of pro-apoptotic regulators. In vivo, oral administration of INCB054329 inhibited tumor growth in several models of hematologic cancers. In the MM1.S multiple myeloma xenograft model, inhibition of tumor growth was correlated with reduction of c-MYC levels. PK-PD analysis showed c-MYC suppression was associated with an IC50 value of less than 100 nM in vivo. In summary these studies demonstrate that INCB054329 is a potent inhibitor of BET transcriptional regulators in models of hematologic malignancies in vitro and in vivo and support its clinical development for the treatment of cancer. Citation Format: Phillip CC Liu, Xuesong Mike Liu, Matthew C. Stubbs, Thomas Maduskuie, Richard Sparks, Nina Zolotarjova, Jun Li, Xiaoming Wen, Margaret Favata, Patricia Feldman, Alla Volgina, Darlise DiMatteo, Robert Collins, Nikoo Falahatpisheh, Padmaja Polam, Yu Li, Maryanne Covington, Sharon Diamond-Fosbenner, Richard Wynn, Timothy Burn, Kris Vaddi, Swamy Yeleswaram, Andrew P. Combs, Wenqing Yao, Reid Huber, Peggy Scherle, Gregory Hollis. Discovery of a novel BET inhibitor INCB054329. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 3523. doi:10.1158/1538-7445.AM2015-3523


Cancer Research | 2015

Abstract 692: The BET inhibitor INCB054329 is synergistic with JAK1 inhibition in models of multiple myeloma

Matthew C. Stubbs; Xuesong M. Liu; Xiaoming Wen; Jun Li; Valerie Dostalik; Sybil O'Connor; Eian Caulder; Margaret Favata; Mark Rupar; Yu Li; Beth Rumberger; Thomas Maduskuie; Richard B. Sparks; Nikoo Falahatpisheh; Padmaja Polam; Kris Vaddi; Timothy Burn; Andrew P. Combs; Wenqing Yao; Reid Huber; Gregory Hollis; Peggy Scherle; Phillip Liu

Bromodomain and Extra Terminal (BET) protein inhibitors have emerged as a potentially effective therapeutic option for multiple tumor types, through their ability to regulate expression of genes necessary for proliferation and survival. For example, multiple myeloma (MM) cells have been shown to be highly sensitive to BET inhibition due in large part to the ability of BET proteins to control transcription of c-myc, an oncogene known to be dysregulated in MM. Likewise, some inflammatory response and cytokine signaling pathways associated with MM (eg. IL-6/JAK/STAT pathway) have also been shown to be reliant on BET proteins. Therefore, inhibition of both BET proteins and the JAK/STAT signaling pathway may be beneficial to MM patients. Here we assess the in vitro and in vivo effects of combining clinical compounds that target BET proteins and JAK in multiple myeloma cell lines. Studies were performed using the potent pan-BET inhibitor INCB054329 and selective JAK1 inhibitors. When tested in cell proliferation assays, the combination of BET and JAK1 inhibitors displayed strong synergistic effects in the IL-6 dependent INA-6 MM cell line in vitro. Western blots also revealed that several pharmacodynamic (PD) markers including c-MYC, PIM-2 and phospho-STAT3 were further repressed with the combination than with single agents alone. Likewise, the c-MYC and p-STAT3 PD markers could also be increasingly repressed in vivo by combined administration of BET and JAK1 inhibitors in the INA-6 mouse xenograft model. In vivo efficacy experiments in the INA-6 model resulted in enhanced, synergistic tumor growth inhibition in the BET/JAK inhibitor cohort as compared with the single drug cohorts. Interestingly, the cytokine independent MM1.S cell line was also sensitive to the BET/JAK inhibitor combination in vivo, while being far less sensitive to JAK1 inhibition as a monotherapy. In the MM1.S model, the c-MYC and p-STAT3 PD markers also behaved as seen in the INA-6 model. Our data indicate that the pharmacological inhibition of BET proteins and JAK1 yields strong combinatorial effects in MM cell lines both in vitro and in vivo. Therefore, dual inhibition of BET proteins and the JAK/STAT signaling pathway may offer a novel therapeutic approach and suggest a potential clinical utility for this drug combination in MM. Citation Format: Matthew C. Stubbs, Xuesong M. Liu, Xiaoming Wen, Jun Li, Valerie Dostalik, Sybil O9Connor, Eian Caulder, Margaret Favata, Mark Rupar, Yu Li, Beth Rumberger, Thomas Maduskuie, Richard Sparks, Nikoo Falahatpisheh, Padmaja Polam, Kris Vaddi, Timothy Burn, Andrew P. Combs, Wenqing Yao, Reid Huber, Gregory Hollis, Peggy Scherle, Phillip CC Liu. The BET inhibitor INCB054329 is synergistic with JAK1 inhibition in models of multiple myeloma. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 692. doi:10.1158/1538-7445.AM2015-692

Collaboration


Dive into the Reid Huber's collaboration.

Researchain Logo
Decentralizing Knowledge