Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reiko Mizutani is active.

Publication


Featured researches published by Reiko Mizutani.


PLOS ONE | 2009

Protective Effect of Geranylgeranylacetone via Enhancement of HSPB8 Induction in Desmin-Related Cardiomyopathy

Atsushi Sanbe; Takuya Daicho; Reiko Mizutani; Toshiya Endo; Noriko Miyauchi; Junji Yamauchi; Kouichi Tanonaka; Charles G. Glabe; Akito Tanoue

Background An arg120gly (R120G) missense mutation in HSPB5 (α-β-crystallin ), which belongs to the small heat shock protein (HSP) family, causes desmin-related cardiomyopathy (DRM), a muscle disease that is characterized by the formation of inclusion bodies, which can contain pre-amyloid oligomer intermediates (amyloid oligomer). While we have shown that small HSPs can directly interrupt amyloid oligomer formation, the in vivo protective effects of the small HSPs on the development of DRM is still uncertain. Methodology/Principal Findings In order to extend the previous in vitro findings to in vivo, we used geranylgeranylacetone (GGA), a potent HSP inducer. Oral administration of GGA resulted not only in up-regulation of the expression level of HSPB8 and HSPB1 in the heart of HSPB5 R120G transgenic (R120G TG) mice, but also reduced amyloid oligomer levels and aggregates. Furthermore, R120G TG mice treated with GGA exhibited decreased heart size and less interstitial fibrosis, as well as improved cardiac function and survival compared to untreated R120G TG mice. To address possible mechanism(s) for these beneficial effects, cardiac-specific transgenic mice expressing HSPB8 were generated. Overexpression of HSPB8 led to a reduction in amyloid oligomer and aggregate formation, resulting in improved cardiac function and survival. Treatment with GGA as well as the overexpression of HSPB8 also inhibited cytochrome c release from mitochondria, activation of caspase-3 and TUNEL-positive cardiomyocyte death in the R120G TG mice. Conclusions/Significance Expression of small HSPs such as HSPB8 and HSPB1 by GGA may be a new therapeutic strategy for patients with DRM.


Journal of Bioscience and Bioengineering | 2011

Evaluation of drug toxicity with hepatocytes cultured in a micro-space cell culture system.

Kazuaki Nakamura; Reiko Mizutani; Atsushi Sanbe; Shin Enosawa; Mureo Kasahara; Atsuko Nakagawa; Yoko Ejiri; Norie Murayama; Yuki Miyamoto; Tomohiro Torii; Shinji Kusakawa; Junji Yamauchi; Motohiro Fukuda; Hiroshi Yamazaki; Akito Tanoue

A micro-space cell culture system was recently developed in which cells such as hepatocytes can be cultured and formed into a multicellular three-dimensional (3D) architecture. In this study, we assessed the performance of HepG2 cells cultured in this micro-space cell culture system in a drug toxicity test, and evaluated the effects of micro-space culture on their hepatocyte-specific functions. The micro-space cell culture facilitated the formation of 3D HepG2 cell architecture. HepG2 cells cultured in a micro-space culture plate exhibited increased albumin secretion and enhanced mRNA expression levels of cytochrome P450 (CYP) enzyme compared to those cultured in a monolayer culture. When the cells were exposed to acetaminophen, a hepatotoxic drug, the damage to the HepG2 cells grown in micro-space culture was greater than the damage to the HepG2 cells grown in monolayer culture. In addition, human primary hepatocytes grown in micro-space culture also exhibited increased albumin secretion, enhanced CYP mRNA expression levels and increased sensitivity to acetaminophen compared to those grown in monolayer culture. These results suggest that this micro-space culture method enhances the hepatocyte-specific functions of hepatocytes, including drug-metabolizing enzyme activities, making hepatocytes grown in the micro-space culture system a useful tool for evaluating drug toxicity in vitro.


Experimental Cell Research | 2008

Neurofibromatosis 2 tumor suppressor, the gene induced by valproic acid, mediates neurite outgrowth through interaction with paxillin

Junji Yamauchi; Yuki Miyamoto; Shinji Kusakawa; Tomohiro Torii; Reiko Mizutani; Atsushi Sanbe; Hideki Nakajima; Nobutaka Kiyokawa; Akito Tanoue

Valproic acid (VPA), the drug for bipolar disorder and epilepsy, has a potent ability to induce neuronal differentiation, yet comparatively little is presently known about the underlying mechanism. We previously demonstrated that c-Jun N-terminal kinase (JNK) phosphorylation of the focal adhesion protein paxillin mediates differentiation in N1E-115 neuroblastoma cells. Here, we show that VPA up-regulates the neurofibromatosis type 2 (NF2) tumor suppressor, merlin, to regulate neurite outgrowth through the interaction with paxillin. The inhibition of merlin function by its knockdown or expression of merlin harboring the Gln-538-to-Pro mutation, a naturally occurring NF2 missense mutation deficient in linking merlin to the actin cytoskeleton, decreases VPA-induced neurite outgrowth. Importantly, the expression of merlin by itself is not sufficient to induce neurite outgrowth, which requires co-expression with paxillin, the binding partner of merlin. In fact, the missense mutation Trp-60-to-Cys or Phe-62-to-Ser, that is deficient in binding to paxillin, reduces neurite outgrowth induced by VPA. In addition, co-expression of a paxillin construct harboring the mutation at the JNK phosphorylation site with merlin results in blunted induction of the outgrowth. We also find that the first LIM domain of paxillin is a major binding region with merlin and that expression of the isolated first LIM domain blocks the effects of VPA. Furthermore, similar findings that merlin regulates neurite outgrowth through the interaction with paxillin have been observed in several kinds of neuronal cells. These results suggest that merlin is an as yet unknown regulator of neurite outgrowth through the interaction with paxillin, providing a possibly common mechanism regulating neurite formation.


Experimental Cell Research | 2009

Valproic acid-inducible Arl4D and cytohesin-2/ARNO, acting through the downstream Arf6, regulate neurite outgrowth in N1E-115 cells.

Junji Yamauchi; Yuki Miyamoto; Tomohiro Torii; Reiko Mizutani; Kazuaki Nakamura; Atsushi Sanbe; Hiroshi Koide; Shinji Kusakawa; Akito Tanoue

The mood-stabilizing agent valproic acid (VPA) potently promotes neuronal differentiation. As yet, however, little is known about the underlying molecular mechanism. Here, we show that VPA upregulates cytohesin-2 and mediates neurite outgrowth in N1E-115 neuroblastoma cells. Cytohesin-2 is the guanine-nucleotide exchange factor (GEF) for small GTPases of the Arf family; it regulates many aspects of cellular functions including morphological changes. Treatment with the specific cytohesin family inhibitor SecinH3 or knockdown of cytohesin-2 with its siRNA results in blunted induction of neurite outgrowth in N1E-115 cells. The outgrowth is specifically inhibited by siRNA knockdown of Arf6, but not by that of Arf1. Furthermore, VPA upregulates Arl4D, an Arf-like small GTPase that has recently been identified as the regulator that binds to cytohesin-2. Arl4D knockdown displays an inhibitory effect on neurite outgrowth resulting from VPA, while expression of constitutively active Arl4D induces outgrowth. We also demonstrate that the addition of cell-permeable peptide, coupling the cytohesin-2-binding region of Arl4D into cells, reduces the effect of VPA. Thus, Arl4D is a previously unknown regulator of neurite formation through cytohesin-2 and Arf6, providing another example that the functional interaction of two different small GTPases controls an important cellular function.


European Journal of Pharmacology | 2009

Both V1A and V1B vasopressin receptors deficiency result in impaired glucose tolerance

Kazuaki Nakamura; Toshinori Aoyagi; Masami Hiroyama; Shinji Kusakawa; Reiko Mizutani; Atsushi Sanbe; Junji Yamauchi; Masazumi Kamohara; Kazuhiro Momose; Akito Tanoue

[Arg(8)]-vasopressin (AVP) is involved in the regulation of glucose homeostasis via vasopressin V(1A) and vasopressin V(1B) receptor. Our previous studies have demonstrated that vasopressin V(1A) receptor deficient (V(1A)R(-/-)) mice exhibited hyperglycemia, vasopressin V(1B) receptor deficient (V(1B)R(-/-)) mice, in contrast, exhibited hypoglycemia with hypoinsulinemia. These findings indicate that vasopressin V(1A) receptor deficiency results in decreased insulin sensitivity, whereas vasopressin V(1B) receptor deficiency results in increased insulin sensitivity. In our previous and present studies, we used the glucose tolerance test to investigate glucose tolerance in mutant mice, lacking either the vasopressin V(1A) receptor, the vasopressin V(1B) receptor, or both receptors, that were kept on a high-fat diet. Glucose and insulin levels were lower in V(1B)R(-/-) mice than in wild type (WT) mice when both groups were fed the high-fat diet, which indicates that the insulin sensitivity of the V(1B)R(-/-) mice was enhanced. V(1A)R(-/-) mice on the high-fat diet, on the other hand, exhibited overt obesity, along with an impaired glucose tolerance, while WT mice on the high-fat diet did not. Next, in order to assess the effect of vasopressin V(1B) receptor deficiency on the development of glucose intolerance caused by vasopressin V(1A) receptor deficiency, we generated mice that were deficient for both vasopressin V(1A) receptor and vasopressin V(1B) receptor (V(1AB)R(-/-)), fed them a high-fat diet, and examined their glucose tolerances using the glucose tolerance test. Glucose tolerance was impaired in V(1AB)R(-/-) mice, suggesting that the effects of vasopressin V(1B) receptor deficiency could not influence the development of hyperglycemia promoted by vasopressin V(1A) receptor deficiency, and that blockade of both receptors could lead to impaired glucose tolerance.


Endocrinology | 2008

Effects of Vasopressin V1b Receptor Deficiency on Adrenocorticotropin Release from Anterior Pituitary Cells in Response to Oxytocin Stimulation

Kazuaki Nakamura; Yoko Fujiwara; Reiko Mizutani; Atsushi Sanbe; Noriko Miyauchi; Masami Hiroyama; Junji Yamauchi; Tatsuya Yamashita; Shigeki Nakamura; Toyoki Mori; Gozoh Tsujimoto; Akito Tanoue

Oxytocin (OT) is one of the secretagogues for stress-induced ACTH release. OT-induced ACTH release is reported to be mediated by the vasopressin V1b receptor in the rat pituitary gland, which contains both OT and V1b receptors. We examined OT-induced ACTH release using primary cultures of anterior pituitary cells from wild-type (V1bR+/+) and V1b receptor knockout (V1bR-/-) mice. OT stimulated similar levels of ACTH release from pituitary cells of V1bR+/+ and V1bR-/- mice. OT-induced ACTH release was significantly inhibited by the selective V1b receptor antagonist SSR149415 and the OT receptor antagonist CL-14-26 in V1bR+/+ mice. In addition, cotreatment with SSR149415 at 10(-6) m and CL-14-26 at 10(-6) m inhibited OT-induced ACTH release to the control level inV1bR+/+ mice. In V1bR-/- mice, OT-induced ACTH release was significantly inhibited by CL-14-26 at 10(-8) m and completely inhibited at 10(-7)m. These results indicate that OT induces the ACTH response via OT and V1b receptors inV1bR+/+ mice but via only OT receptors in V1bR-/- mice. The gene expression level of the OT receptor was significantly higher in the anterior pituitary gland of V1bR-/- mice than in that of V1bR+/+ mice, suggesting that the OT receptor is up-regulated to compensate for ACTH release under conditions of V1b receptor deficiency.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2008

Alcohol preference in mice lacking the Avpr1a vasopressin receptor

Atsushi Sanbe; Norio Takagi; Yoko Fujiwara; Junji Yamauchi; Toshiya Endo; Reiko Mizutani; Satoshi Takeo; Gozoh Tsujimoto; Akito Tanoue

[Arg(8)]-vasopressin (Avp), a nonapeptide hormone, is known to regulate blood pressure, water balance, and a variety of behaviors such as anxiety, aggression, and bonding. Although some evidence that Avp modifies ethanol consumption and some of the effects of ethanol on behavior have been reported, the role of Avp in alcohol consumption and preference is poorly understood. The Avp1a receptor (Avpr1a) is ubiquitously expressed in the central nervous system. To determine the role of Avp signaling on the behavioral effects of alcohol, we examined voluntary ethanol consumption in mice with targeted disruptions of the Avpr1a knockout (Avpr1a KO) gene. Avpr1a KO mice displayed both increased ethanol consumption and preference compared with wild-type (WT) mice. Enhanced ethanol consumption was dramatically and reversibly reduced by treatment with N-methyl-D-aspartic acid antagonists. Basal glutamate release was elevated around the striatum in Avpr1a KO mice. Elevation of extracellular glutamate was also produced in WT mice by local application of an Avpr1a antagonist though a dialysis probe, and this elevation was quickly reversed by stopping the perfusion. These results suggest that Avp can inhibit the release of glutamate from the presynaptic terminal via the Avp1a receptor and that elevation of glutamate levels owing to loss of the inhibitory effect via Avp-Avpr1a signaling may play an important role in the preference for ethanol.


Cellular Signalling | 2009

Sorting nexin 3, a protein upregulated by lithium, contains a novel phosphatidylinositol-binding sequence and mediates neurite outgrowth in N1E-115 cells.

Reiko Mizutani; Junji Yamauchi; Shinji Kusakawa; Kazuaki Nakamura; Atsushi Sanbe; Tomohiro Torii; Yuki Miyamoto; Akito Tanoue

Lithium, a drug in the treatment of bipolar disorder, modulates many aspects of neuronal developmental processes such as neurogenesis, survival, and neuritogenesis. However, the underlying mechanism still remains to be understood. Here, we show that lithium upregulates the expression of sorting nexin 3 (SNX3), one of the Phox (PX) domain-containing proteins involved in endosomal sorting, and regulates neurite outgrowth in mouse N1E-115 neuroblastoma cells. The inhibition of SNX3 function by its knockdown decreases lithium-induced outgrowth of neurites. Transfection of the full-length SNX3 construct into cells facilitates the outgrowth. We also find that the C-terminus, as well as the PX domain, of SNX3 has a functional binding sequence with phosphatidylinositol monophosphates. Transfection of the C-terminal deletion mutant or only the C-terminus does not have an effect on the outgrowth. These results suggest that SNX3, a protein upregulated by lithium, is an as yet unknown regulator of neurite formation and that it contains another functional phosphatidylinositol phosphate-binding region at the C-terminus.


European Journal of Pharmacology | 2009

Altered lipid metabolism in vasopressin V1B receptor-deficient mice.

Masami Hiroyama; Yoko Fujiwara; Kazuaki Nakamura; Toshinori Aoyagi; Reiko Mizutani; Atsushi Sanbe; Ryuji Tasaki; Akito Tanoue

We previously reported that insulin sensitivity was increased in vasopressin V(1B) receptor-deficient (V(1B)R(-/-)) mice. Here, we investigate the lipid metabolism in V(1B)R(-/-) mice. Despite having lower body weight, V(1B)R(-/-) mice had significantly greater fat weight of the epididymal white adipose tissue than V(1B)R(+/+) mice. Glycerol production and beta-oxidation were suppressed in V(1B)R(-/-) mice under a fasting condition, and isoproterenol-stimulated lipolysis in differentiated adipocytes was significantly decreased in V(1B)R(-/-) mice. These results indicated that lipolysis was inhibited in V(1B)R(-/-) mice. On the other hand, lipogenesis was promoted by the increased metabolism from glucose to lipid. Furthermore, our in vivo and in vitro analyses showed that the secretion of adiponectin was increased in V(1B)R(-/-) mice, while the serum leptin level was lower in V(1B)R(-/-) mice. These findings indicated that the insulin sensitivity and lipid metabolism were altered in V(1B)R(-/-) mice and that the increased insulin sensitivity could contribute to the suppressed lipolysis and enhanced lipogenesis, which consequently resulted in the increased fat weight in V(1B)R(-/-) mice.


Neuroscience Letters | 2006

The protective effect of hepatocyte growth factor against cell death in the hippocampus after transient forebrain ischemia is related to the improvement of apurinic/apyrimidinic endonuclease/redox factor-1 level and inhibition of NADPH oxidase activity

Makiko Niimura; Norio Takagi; Keiko Takagi; Reiko Mizutani; Kouichi Tanonaka; Hiroshi Funakoshi; Kunio Matsumoto; Toshikazu Nakamura; Satoshi Takeo

Early oxidative DNA damage is regarded to be an initiator of neuronal apoptotic cell death after cerebral ischemia. Although evidence suggests that HGF has the ability to protect cells from oxidative stress, it remains unclear as to how HGF suppresses oxidative DNA damage after cerebral ischemia. Apurinic/apyrimidinic endonuclease/redox factor-1 (APE/Ref-1) is a multifunctional protein in the DNA base repair pathway that is responsible for repairing apurinic/apyrimidinic sites in DNA after oxidation. We demonstrated that both the immunoreactivity and the number of APE/Ref-1-positive cells in the hippocampal CA1 region were decreased after transient forebrain ischemia and that treatment with HGF suppressed this reduction. The expression of Cu/ZnSOD and MnSOD in the hippocampal CA1 region did not change after ischemia, regardless of treatment with or not with HGF. The activity of NADPH oxidase was increased mainly in glia-like cells in the hippocampal CA1 region after ischemia, and this increase was attenuated by HGF treatment. These results suggest that the protective effects of HGF against cerebral ischemia-induced cell death in the hippocampal CA1 region are related to the improvement of neuronal APE/Ref-1 expression and the inhibition of NADPH oxidase activity in glia-like cells.

Collaboration


Dive into the Reiko Mizutani's collaboration.

Top Co-Authors

Avatar

Junji Yamauchi

Tokyo University of Pharmacy and Life Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Atsushi Sanbe

Iwate Medical University

View shared research outputs
Top Co-Authors

Avatar

Shinji Kusakawa

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Tomohiro Torii

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuki Miyamoto

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge