Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reiko Nagashima is active.

Publication


Featured researches published by Reiko Nagashima.


Brain Research | 2006

Nuclear factor-kappa B nuclear translocation in the cochlea of mice following acoustic overstimulation.

Masatsugu Masuda; Reiko Nagashima; Sho Kanzaki; Masato Fujioka; Kiyokazu Ogita; Kaoru Ogawa

There is increasing evidence to suggest that the expression of many molecules in the lateral wall of the cochlea plays an important role in noise-induced stress responses. In this study, activation of the nuclear transcription factor nuclear factor-kappa B (NF-kappaB) was investigated in the cochlea of mice treated with intense noise exposure (4 kHz, octave band, 124 dB, for 2 h). The present noise exposure led to remarkable auditory brainstem response threshold shifts and cochlear damage on surface preparations. To assess the effects of noise exposure on NF-kappaB/DNA binding activity in the cochlea, we prepared nuclear extracts from the cochlea at different time points after noise exposure and carried out an electrophoretic mobility shift assay using a probe specific to NF-kappaB. NF-kappaB/DNA binding was significantly enhanced in the cochlea 2-6 h after noise exposure and returned to basal levels after 12 h. Supershift analysis using antibodies against p65 and p50 proteins, which are components of NF-kappaB, demonstrated that enhancement of NF-kappaB/DNA binding was at least in part due to nuclear translocation of p65. An immunohistochemical study also showed that nuclear translocation of both p65 and p50 was observed in the lateral wall after noise exposure and that there may be a possible close association between p65 and enhanced inducible nitric oxide synthase expression. These results suggest that NF-kappaB may have a detrimental role in the response to acoustic overstimulation in the cochlea of mice.


Neurochemistry International | 2008

In vivo depletion of endogenous glutathione facilitates trimethyltin-induced neuronal damage in the dentate gyrus of mice by enhancing oxidative stress

Masanori Yoneyama; Norito Nishiyama; Makoto Shuto; Chie Sugiyama; Koichi Kawada; Keiichi Seko; Reiko Nagashima; Kiyokazu Ogita

Acute treatment with trimethyltin chloride (TMT) produces neuronal damage in the hippocampal dentate gyrus of mice. We investigated the in vivo role of glutathione in mechanisms associated with TMT-induced neural cell damage in the hippocampus by examining mice depleted of endogenous glutathione by prior treatment with 2-cyclohexen-1-one (CHO). In the hippocampus of animals treated with CHO 1h beforehand, a significant increase was seen in the number of single-stranded DNA-positive cells in the dentate gyrus when determined on day 2 after the injection of TMT at a dose of 2.0 mg/kg. Immunoblot analysis revealed that CHO treatment induced a significant increase in the phosphorylation of c-Jun N-terminal kinase in the cytosolic and nuclear fractions obtained from the dentate gyrus at 16 h after the TMT injection. There was also a concomitant increase in the level of phospho-c-Jun in the cytosol at 16 h after the injection. Expectedly, lipid peroxidation was increased by TMT in the hippocampus, and was enhanced by the CHO treatment. Moreover, CHO treatment facilitated behavioral changes induced by TMT. Taken together, our data indicate that TMT-induced neuronal damage is caused by activation of cell death signals induced at least in part by oxidative stress. We conclude that endogenous glutathione protectively regulates neuronal damage induced by TMT by attenuating oxidative stress.


Neuropharmacology | 2005

In vivo treatment with the K+ channel blocker 4-aminopyridine protects against kainate-induced neuronal cell death through activation of NMDA receptors in murine hippocampus

Kiyokazu Ogita; Hiroaki Okuda; Mami Watanabe; Reiko Nagashima; Chie Sugiyama; Yukio Yoneda

Activation of NMDA receptors has been shown to induce either neuronal cell death or neuroprotection against excitotoxicity in cultured neurons in vitro. To elucidate in vivo neuroprotective role of NMDA receptors, we investigated the effects of activation of NMDA receptors by endogenous glutamate on kainate-induced neuronal damage to the mouse hippocampus in vivo. The systemic administration of the K+ channel blocker 4-aminopyridine (4-AP, 5 mg/kg, i.p.) induced expression of c-Fos in the hippocampal neuronal cell layer, which expression was completely abolished by the noncompetitive NMDA receptor antagonist MK-801, thus indicating that the administration of 4-AP would activate NMDA receptors in the hippocampal neurons. The prior administration of 4-AP at 1 h to 1 day before significantly prevented kainate-induced pyramidal cell death in the hippocampus and expression of pyramidal cells immunoreactive with an antibody against single-stranded DNA. Further immunohistochemical study on deoxyribonuclease II revealed that the pretreatment with 4-AP led to complete abolition of deoxyribonuclease II expression induced by kainate in the CA1 and CA3 pyramidal cells. The neuroprotection mediated by 4-AP was blocked by MK-801 and by the adenosine A1 antagonist 8-cyclopenthyltheophylline. Taken together, in vivo activation of NMDA receptors is capable of protecting against kainate-induced neuronal damage through blockade of DNA fragmentation induced by deoxyribonuclease II in the murine hippocampus.


Journal of Neuroscience Research | 2008

In Vivo Acute Treatment With Trimethyltin Chloride Causes Neuronal Degeneration in the Murine Olfactory Bulb and Anterior Olfactory Nucleus by Different Cascades in Each Region

Koichi Kawada; Masanori Yoneyama; Reiko Nagashima; Kiyokazu Ogita

Our earlier study demonstrated that in vivo acute treatment with trimethyltin chloride (TMT) produces severe neuronal damage in the dentate gyrus and cognition impairment in mice. In the present study, we assessed whether TMT was capable of causing neuronal degeneration in the olfactory bulb (OB) and anterior olfactory nucleus (AON) of the mouse brain. An intraperitoneal injection of TMT at the dose of 2.8 mg/kg led to a dramatic increase in the number of degenerating cells, which were reactive with antibody against single‐stranded DNA, in the granule cell layer (GCL) of the OB and AON 1 day and 2 days later, respectively. TMT treatment produced a marked translocation of phospho‐c‐Jun‐N‐terminal kinase from the cytoplasm to the nucleus in the AON. Expectedly, a marked increase in phospho‐c‐Jun‐positive cells was seen in the AON after the treatment. In addition to the AON, the mitral cell layer of the olfactory bulb showed the presence of phospho‐c‐Jun‐positive cells after the treatment. However, the GCL had no cells positive for either phospho‐c‐Jun‐N‐terminal kinase or phospho‐c‐Jun at any time after the treatment with TMT. Similarly, TMT‐induced nuclear translocation of the lysosomal enzyme deoxyribonuclease II was seen in the AON, but not in the GCL. On the other hand, TMT elicited the expression of activated caspase 3 in the GCL but not in the AON. Taken together, our results suggest that TMT is capable of causing neuronal degeneration in the murine OB and AON through different cascades in the two structures.


Brain Research | 2006

Enhanced biosynthesis of glutathione in the spiral ganglion of the cochlea after in vivo treatment with dexamethasone in mice.

Reiko Nagashima; Kiyokazu Ogita

Glucocorticoids have been widely used as a therapeutic drug for sudden sensorineural hearing loss. However, very little is known about the mechanism(s) underlying the protective effect of glucocorticoids against hearing loss. As an approach toward elucidating the mechanism(s), we evaluated the effects of dexamethasone (DEX) treatment on the biosynthesis of GSH in the mouse cochlea in vivo. The systemic administration of DEX led to a significant increase in the total GSH level in the cochlea 2 to 24 h later. This DEX-induced increase in GSH occurred selectively in the spiral ganglion, but not significantly in the lateral wall tissues or in the organ of Corti. Furthermore, RT-PCR analysis revealed that DEX treatment resulted in enhanced expression of gamma-glutamylcysteine synthetase (gamma-GCS), which is the rate-limiting enzyme for de novo GSH synthesis, 1 to 24 h after the treatment. In addition to enhancing GSH biosynthesis, DEX treatment was effective in reducing lipid peroxidation in the cochlea. Taken together, DEX has the ability to facilitate GSH biosynthesis through enhanced expression of gamma-GCS in the cochlear spiral ganglion.


Developmental Neurobiology | 2009

Expression of Pou3f3/Brn-1 and its genomic methylation in developing auditory epithelium.

Hideki Mutai; Reiko Nagashima; Yoshinobu Sugitani; Tetsuo Noda; Masato Fujii; Tatsuo Matsunaga

In the mammalian cochlea, both the sensory cells—called hair cells (HCs)—and nonsensory cells such as supporting cells (SCs) and mesenchymal cells participate in proper auditory function through the expression of various functional molecules. During development, expression of certain genes is repressed through genomic methylation, one of the major epigenetic regulatory mechanisms. We explored the genomic regions that were differentially methylated in rat auditory epithelium at postnatal day 1 (P1) and P14 using amplification of intermethylated sites (AIMS). An AIMS fragment was mapped to the 3′‐flanking region of Pou3f3/Brn‐1. Bisulfite‐converted PCR and quantitative methylation‐specific PCR showed that the methylation frequency of the AIMS region and the adjacent CpG island was increased at P14, when the expression of Pou3f3 and the noncoding RNAs nearby decreased. Expression of de novo DNA methyltransferases 3a and 3b also suggests a role of epigenetic regulation during postnatal inner ear development. Immunohistochemical analysis showed that Pou3f3 was expressed specifically in the SCs and mesenchymal cells in the cochlea and established that Pou3f3 is a new cell‐type marker for studying inner ear development. Mice deficient in Pou3f3 or Pou3f2 plus Pou3f3 did not exhibit any abnormality in the embryonic cochlea. Absence of Pou3f3 affected neither the proliferation nor the differentiation activities of HC progenitor cells. Pou3f3 may, however, be important for the maintenance or functional development of the postnatal cochlea. This is the first report to study involvement of an epigenetic regulatory mechanism in the developing mammalian auditory epithelium.


Neuropharmacology | 2008

Altered expression of heat shock protein 110 family members in mouse hippocampal neurons following trimethyltin treatment in vivo and in vitro.

Masanori Yoneyama; Naoko Iwamoto; Reiko Nagashima; Chie Sugiyama; Koichi Kawada; Nobuyuki Kuramoto; Makoto Shuto; Kiyokazu Ogita

The heat shock protein (Hsp) 110 family is composed of HSP105, APG-1, and APG-2. As the response of these proteins to neuronal damage is not yet fully understood, in the present study, we assessed their expression in mouse hippocampal neurons following trimethyltin chloride (TMT) treatment in vivo and in vitro. Although each of these three Hsps had a distinct regional distribution within the hippocampus, a low level of all of them was observed in the granule cell layer of the dentate gyrus in naïve animals. TMT was effective in markedly increasing the level of these Hsps in the granule cell layer, at least 16h to 4days after the treatment. In the dentate granule cell layer on day 2 after TMT treatment, HSP105 was expressed mainly in the perikarya of NeuN-positive cells (intact neurons); whereas APG-1 and APG-2 were predominantly found in NeuN-negative cells (damaged neurons as evidenced by signs of cell shrinkage and condensation of chromatin). Assessments using primary cultures of mouse hippocampal neurons exposed to TMT revealed that whereas HSP105 was observed in intact neurons rather than in damaged neurons, APG-1 and APG-2 were detected in both damaged neurons and intact neurons. Taken together, our data suggest that APG-1 and APG-2 may play different roles from HSP105 in neurons damaged by TMT.


Neurochemistry International | 2007

Acoustic overstimulation facilitates the expression of glutamate–cysteine ligase catalytic subunit probably through enhanced DNA binding of activator protein-1 and/or NF-κB in the murine cochlea

Reiko Nagashima; Chie Sugiyama; Masanori Yoneyama; Nobuyuki Kuramoto; Koichi Kawada; Kiyokazu Ogita

Glutamate-cysteine ligase (GCL), previously known as gamma-glutamylcysteine synthetase, is the rate-limiting enzyme for GSH synthesis. The expression of GCL is mediated by activator protein-1 (AP-1) and nuclear factor-kappa B (NF-kappaB), which are known to participate in stress-induced apoptotic pathways in neuronal cells. In this study, we investigated the changes in the level of these transcription factors as well as of GCL catalytic subunit in the cochlea in response to acoustic overstimulation. Nuclear extracts were prepared from the cochlear at various time points after intense noise exposure (4kHz octave band, 125dB sound pressure level, 5h), and then determined DNA binding activity of the transcription factors. AP-1 DNA binding was markedly increased 2-12h after the noise exposure, with a peak at 2h after the exposure. NF-kappaB DNA binding was also increased immediately after the exposure. Semi-quantitative RT-PCR revealed that the catalytic subunit of GCL mRNA was elevated in the cochlea 2-24h post the exposure. Further immunohistochemical study revealed that increased level of GCL catalytic subunit observed at least in the spiral ganglion cells after the exposure. These results suggest that intense noise exposure facilitates the expression of GCL catalytic subunit in the cochlea possibly through the activation of transcription factors including AP-1 and NF-kappaB.


Neuropharmacology | 2004

Enhanced binding activity of nuclear antioxidant-response element through possible formation of Nrf2/Fos-B complex after in vivo treatment with kainate in murine hippocampus

Kiyokazu Ogita; Masaki Kubo; Norito Nishiyama; Mami Watanabe; Reiko Nagashima; Yukio Yoneda

To evaluate whether in vivo glutamate signals modulate signaling processes mediated by antioxidant-response element (ARE), we examined ARE binding in nuclear extracts from the hippocampus after in vivo treatment of mice with kainate. Enhancement of ARE binding was found at 2 h to 3 days after kainate treatment. Supershift analysis indicated possible involvement of Nrf2, Fos-B, and c-Fos in ARE binding in hippocampal nuclear extracts obtained from kainate-treated animals. On super-supershift analysis by combination of these antibodies, ARE probe/protein complex was shifted by the anti-Fos-B antibody alone, but not by the anti-c-Fos antibody alone, and further addition of the anti-Nrf2 antibody dramatically eliminated binding of the complex shifted by the anti-Fos-B antibody in hippocampal nuclear extracts from kainate-treated animals. Kainate treatment induced a profound increase in levels of c-Fos and Fos-B, without markedly affecting that of Nrf2 in nuclear extracts from the hippocampus. Co-localization of Nrf2 with both Fos-B and c-Fos was found in neuronal cell layers of the hippocampus in kainate-treated animals. RT-PCR analysis revealed that kainate treatment increases glutathione-S-transferase mRNA level in the hippocampus. Taken together, kainate signals may enhance nuclear ARE binding through an interaction between constitutive Nrf2 with inducible Fos-B expressed in murine hippocampus.


PLOS ONE | 2014

Disruption of ion-trafficking system in the cochlear spiral ligament prior to permanent hearing loss induced by exposure to intense noise: possible involvement of 4-hydroxy-2-nonenal as a mediator of oxidative stress.

Taro Yamaguchi; Reiko Nagashima; Masanori Yoneyama; Tatsuo Shiba; Kiyokazu Ogita

Noise-induced hearing loss is at least in part due to disruption of endocochlear potential, which is maintained by various K+ transport apparatuses including Na+, K+-ATPase and gap junction-mediated intercellular communication in the lateral wall structures. In this study, we examined the changes in the ion-trafficking-related proteins in the spiral ligament fibrocytes (SLFs) following in vivo acoustic overstimulation or in vitro exposure of cultured SLFs to 4-hydroxy-2-nonenal, which is a mediator of oxidative stress. Connexin (Cx)26 and Cx30 were ubiquitously expressed throughout the spiral ligament, whereas Na+, K+-ATPase α1 was predominantly detected in the stria vascularis and spiral prominence (type 2 SLFs). One-hour exposure of mice to 8 kHz octave band noise at a 110 dB sound pressure level produced an immediate and prolonged decrease in the Cx26 expression level and in Na+, K+-ATPase activity, as well as a delayed decrease in Cx30 expression in the SLFs. The noise-induced hearing loss and decrease in the Cx26 protein level and Na+, K+-ATPase activity were abolished by a systemic treatment with a free radical-scavenging agent, 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl, or with a nitric oxide synthase inhibitor, Nω-nitro-L-arginine methyl ester hydrochloride. In vitro exposure of SLFs in primary culture to 4-hydroxy-2-nonenal produced a decrease in the protein levels of Cx26 and Na+, K+-ATPase α1, as well as Na+, K+-ATPase activity, and also resulted in dysfunction of the intercellular communication between the SLFs. Taken together, our data suggest that disruption of the ion-trafficking system in the cochlear SLFs is caused by the decrease in Cxs level and Na+, K+-ATPase activity, and at least in part involved in permanent hearing loss induced by intense noise. Oxidative stress-mediated products might contribute to the decrease in Cxs content and Na+, K+-ATPase activity in the cochlear lateral wall structures.

Collaboration


Dive into the Reiko Nagashima's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tatsuo Matsunaga

International University of Health and Welfare

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge