Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reiko Sakaguchi is active.

Publication


Featured researches published by Reiko Sakaguchi.


American Journal of Human Genetics | 2010

Compound Heterozygosity for Loss-of-Function Lysyl-tRNA Synthetase Mutations in a Patient with Peripheral Neuropathy

Heather M. McLaughlin; Reiko Sakaguchi; Cuiping Liu; Takao Igarashi; Davut Pehlivan; Kristine Chu; Ram Iyer; Pedro Cruz; Praveen F. Cherukuri; Nancy F. Hansen; James C. Mullikin; Leslie G. Biesecker; Thomas E. Wilson; Victor Ionasescu; Garth A. Nicholson; Charles Searby; Kevin Talbot; J. M. Vance; Stephan Züchner; Kinga Szigeti; James R. Lupski; Ya-Ming Hou; Eric D. Green; Anthony Antonellis

Charcot-Marie-Tooth (CMT) disease comprises a genetically and clinically heterogeneous group of peripheral nerve disorders characterized by impaired distal motor and sensory function. Mutations in three genes encoding aminoacyl-tRNA synthetases (ARSs) have been implicated in CMT disease primarily associated with an axonal pathology. ARSs are ubiquitously expressed, essential enzymes responsible for charging tRNA molecules with their cognate amino acids. To further explore the role of ARSs in CMT disease, we performed a large-scale mutation screen of the 37 human ARS genes in a cohort of 355 patients with a phenotype consistent with CMT. Here we describe three variants (p.Leu133His, p.Tyr173SerfsX7, and p.Ile302Met) in the lysyl-tRNA synthetase (KARS) gene in two patients from this cohort. Functional analyses revealed that two of these mutations (p.Leu133His and p.Tyr173SerfsX7) severely affect enzyme activity. Interestingly, both functional variants were found in a single patient with CMT disease and additional neurological and non-neurological sequelae. Based on these data, KARS becomes the fourth ARS gene associated with CMT disease, indicating that this family of enzymes is specifically critical for axon function.


Nature Methods | 2013

Genetically encoded fluorescent thermosensors visualize subcellular thermoregulation in living cells

Shigeki Kiyonaka; Taketoshi Kajimoto; Reiko Sakaguchi; Daisuke Shinmi; Mariko Omatsu-Kanbe; Hiroshi Matsuura; Hiromi Imamura; Takenao Yoshizaki; Itaru Hamachi; Takashi Morii; Yasuo Mori

In mammals and birds, thermoregulation to conserve body temperature is vital to life. Multiple mechanisms of thermogeneration have been proposed, localized in different subcellular organelles. However, visualizing thermogenesis directly in intact organelles has been challenging. Here we have developed genetically encoded, GFP-based thermosensors (tsGFPs) that enable visualization of thermogenesis in discrete organelles in living cells. In tsGFPs, a tandem formation of coiled-coil structures of the Salmonella thermosensing protein TlpA transmits conformational changes to GFP to convert temperature changes into visible and quantifiable fluorescence changes. Specific targeting of tsGFPs enables visualization of thermogenesis in the mitochondria of brown adipocytes and the endoplasmic reticulum of myotubes. In HeLa cells, tsGFP targeted to mitochondria reveals heterogeneity in thermogenesis that correlates with the electrochemical gradient. Thus, tsGFPs are powerful tools to noninvasively assess thermogenesis in living cells.


Human Mutation | 2012

A Recurrent Loss-of-Function Alanyl-tRNA Synthetase (AARS) Mutation in Patients with Charcot-Marie-Tooth Disease Type 2N (CMT2N)

Heather M. McLaughlin; Reiko Sakaguchi; William Giblin; Thomas E. Wilson; Leslie G. Biesecker; James R. Lupski; Kevin Talbot; Jeffery M. Vance; Stephan Züchner; Yi Chung Lee; Marina Kennerson; Ya-Ming Hou; Garth A. Nicholson; Anthony Antonellis

Charcot‐Marie‐Tooth (CMT) disease comprises a heterogeneous group of peripheral neuropathies characterized by muscle weakness and wasting, and impaired sensation in the extremities. Four genes encoding an aminoacyl‐tRNA synthetase (ARS) have been implicated in CMT disease. ARSs are ubiquitously expressed, essential enzymes that ligate amino acids to cognate tRNA molecules. Recently, a p.Arg329His variant in the alanyl‐tRNA synthetase (AARS) gene was found to segregate with dominant axonal CMT type 2N (CMT2N) in two French families; however, the functional consequence of this mutation has not been determined. To investigate the role of AARS in CMT, we performed a mutation screen of the AARS gene in patients with peripheral neuropathy. Our results showed that p.Arg329His AARS also segregated with CMT disease in a large Australian family. Aminoacylation and yeast viability assays showed that p.Arg329His AARS severely reduces enzyme activity. Genotyping analysis indicated that this mutation arose on three distinct haplotypes, and the results of bisulfite sequencing suggested that methylation‐mediated deamination of a CpG dinucleotide gives rise to the recurrent p.Arg329His AARS mutation. Together, our data suggest that impaired tRNA charging plays a role in the molecular pathology of CMT2N, and that patients with CMT should be directly tested for the p.Arg329His AARS mutation. Hum Mutat 33:244–253, 2012.


Journal of Biological Chemistry | 2011

Allosteric Communication in Cysteinyl tRNA Synthetase A NETWORK OF DIRECT AND INDIRECT READOUT

Amit Ghosh; Reiko Sakaguchi; Cuiping Liu; Saraswathi Vishveshwara; Ya-Ming Hou

Protein structure networks are constructed for the identification of long-range signaling pathways in cysteinyl tRNA synthetase (CysRS). Molecular dynamics simulation trajectory of CysRS-ligand complexes were used to determine conformational ensembles in order to gain insight into the allosteric signaling paths. Communication paths between the anticodon binding region and the aminoacylation region have been identified. Extensive interaction between the helix bundle domain and the anticodon binding domain, resulting in structural rigidity in the presence of tRNA, has been detected. Based on the predicted model, six residues along the communication paths have been examined by mutations (single and double) and shown to mediate a coordinated coupling between anticodon recognition and activation of amino acid at the active site. This study on CysRS clearly shows that specific key residues, which are involved in communication between distal sites in allosteric proteins but may be elusive in direct structure analysis, can be identified from dynamics of protein structure networks.


Sensors | 2010

Design Strategies of Fluorescent Biosensors Based on Biological Macromolecular Receptors

Kazuki Tainaka; Reiko Sakaguchi; Hironori Hayashi; Shun Nakano; Fong Fong Liew; Takashi Morii

Fluorescent biosensors to detect the bona fide events of biologically important molecules in living cells are increasingly demanded in the field of molecular cell biology. Recent advances in the development of fluorescent biosensors have made an outstanding contribution to elucidating not only the roles of individual biomolecules, but also the dynamic intracellular relationships between these molecules. However, rational design strategies of fluorescent biosensors are not as mature as they look. An insatiable request for the establishment of a more universal and versatile strategy continues to provide an attractive alternative, so-called modular strategy, which permits facile preparation of biosensors with tailored characteristics by a simple combination of a receptor and a signal transducer. This review describes an overview of the progress in design strategies of fluorescent biosensors, such as auto-fluorescent protein-based biosensors, protein-based biosensors covalently modified with synthetic fluorophores, and signaling aptamers, and highlights the insight into how a given receptor is converted to a fluorescent biosensor. Furthermore, we will demonstrate a significance of the modular strategy for the sensor design.


Journal of the American Chemical Society | 2013

Simultaneous detection of ATP and GTP by covalently linked fluorescent ribonucleopeptide sensors.

Shun Nakano; Masatora Fukuda; Tomoki Tamura; Reiko Sakaguchi; Eiji Nakata; Takashi Morii

A noncovalent RNA complex embedding an aptamer function and a fluorophore-labeled peptide affords a fluorescent ribonucleopeptide (RNP) framework for constructing fluorescent sensors. By taking an advantage of the noncovalent properties of the RNP complex, the ligand-binding and fluorescence characteristics of the fluorescent RNP can be independently tuned by taking advantage of the nature of the RNA and peptide subunits, respectively. Fluorescent sensors tailored for given measurement conditions, such as a detection wavelength and a detection concentration range for a ligand of interest can be easily identified by screening of fluorescent RNP libraries. The noncovalent configuration of a RNP becomes a disadvantage when the sensor is to be utilized at very low concentrations or when multiple sensors are applied to the same solution. Here, we report a strategy to convert a fluorescent RNP sensor in the noncovalent configuration into a covalently linked stable fluorescent RNP sensor. This covalently linked fluorescent RNP sensor enabled ligand detection at a low sensor concentration, even in cell extracts. Furthermore, application of both ATP and GTP sensors enabled simultaneous detection of ATP and GTP by monitoring each wavelength corresponding to the respective sensor. Importantly, when a fluorescein-modified ATP sensor and a pyrene-modified GTP sensor were co-incubated in the same solution, the ATP sensor responded at 535 nm only to changes in the concentration of ATP, whereas the GTP sensor detected GTP at 390 nm without any effect on the ATP sensor. Finally, simultaneous monitoring by these sensors enabled real-time measurement of adenosine deaminase enzyme reactions.


Human Mutation | 2014

Impaired function is a common feature of neuropathy-associated glycyl-tRNA synthetase mutations.

Laurie B. Griffin; Reiko Sakaguchi; David Mcguigan; Michael Gonzalez; Charles Searby; Stephan Züchner; Ya-Ming Hou; Anthony Antonellis

Charcot–Marie–Tooth disease type 2D (CMT2D) is an autosomal‐dominant axonal peripheral neuropathy characterized by impaired motor and sensory function in the distal extremities. Mutations in the glycyl‐tRNA synthetase (GARS) gene cause CMT2D. GARS is a member of the ubiquitously expressed aminoacyl‐tRNA synthetase (ARS) family and is responsible for charging tRNA with glycine. To date, 13 GARS mutations have been identified in patients with CMT disease. While functional studies have revealed loss‐of‐function characteristics, only four GARS mutations have been rigorously studied. Here, we report the functional evaluation of nine CMT‐associated GARS mutations in tRNA charging, yeast complementation, and subcellular localization assays. Our results demonstrate that impaired function is a common characteristic of CMT‐associated GARS mutations. Additionally, one mutation previously associated with CMT disease (p.Ser581Leu) does not demonstrate impaired function, was identified in the general population, and failed to segregate with disease in two newly identified families with CMT disease. Thus, we propose that this variant is not a disease‐causing mutation. Together, our data indicate that impaired function is a key component of GARS‐mediated CMT disease and emphasize the need for careful genetic and functional evaluation before implicating a variant in disease onset.


RNA | 2012

Recognition of guanosine by dissimilar tRNA methyltransferases

Reiko Sakaguchi; Anders M.B. Giessing; Qing Dai; Georges Lahoud; Zita Liutkeviciute; Saulius Klimašauskas; Joseph A. Piccirilli; Finn Kirpekar; Ya-Ming Hou

Guanosines are important for biological activities through their specific functional groups that are recognized for RNA or protein interactions. One example is recognition of N(1) of G37 in tRNA by S-adenosyl-methionine (AdoMet)-dependent tRNA methyltransferases to synthesize m(1)G37-tRNA, which is essential for translational fidelity in all biological domains. Synthesis of m(1)G37-tRNA is catalyzed by TrmD in bacteria and by Trm5 in eukarya and archaea, using unrelated and dissimilar structural folds. This raises the question of how dissimilar proteins recognize the same guanosine. Here we probe the mechanism of discrimination among functional groups of guanosine by TrmD and Trm5. Guanosine analogs were systematically introduced into tRNA through a combination of chemical and enzymatic synthesis. Single turnover kinetic assays and thermodynamic analysis of the effect of each analog on m(1)G37-tRNA synthesis reveal that TrmD and Trm5 discriminate functional groups differently. While both recognize N(1) and O(6) of G37, TrmD places a much stronger emphasis on these functional groups than Trm5. While the exocyclic 2-amino group of G37 is important for TrmD, it is dispensable for Trm5. In addition, while an adjacent G36 is obligatory for TrmD, it is nonessential for Trm5. These results depict a more rigid requirement of guanosine functional groups for TrmD than for Trm5. However, the sensitivity of both enzymes to analog substitutions, together with an experimental revelation of their low cellular concentrations relative to tRNA substrates, suggests a model in which these enzymes rapidly screen tRNA by direct recognition of G37 in order to monitor the global state of m(1)G37-tRNA.


Nature Methods | 2015

Validating subcellular thermal changes revealed by fluorescent thermosensors

Shigeki Kiyonaka; Reiko Sakaguchi; Itaru Hamachi; Takashi Morii; Takenao Yoshizaki; Yasuo Mori

To the Editor: In their recent Commentary arguing that a single cell cannot substantially raise its temperature by endogenous thermogenesis, Baffou et al. raised a critical issue1 concerning the observations of temperature rise of DT in single cells and of subcellular thermal heterogeneities2–4. They argue that the observed DT (1-2 K) of a whole cell2,3 would be much larger than the theoretical DT estimated from the relation


Journal of Biological Chemistry | 2013

The Catalytic Domain of Topological Knot tRNA Methyltransferase (TrmH) Discriminates between Substrate tRNA and Nonsubstrate tRNA via an Induced-fit Process

Anna Ochi; Koki Makabe; Ryota Yamagami; Akira Hirata; Reiko Sakaguchi; Ya-Ming Hou; Kazunori Watanabe; Osamu Nureki; Kunihiro Kuwajima; Hiroyuki Hori

Background: Topologically knotted tRNA methyltransferases specifically recognize substrate tRNA. Results: Site-directed mutagenesis studies, chimeric protein analysis, and pre-steady state kinetics clarify the tRNA recognition sites of TrmH. Conclusion: The N- and C-terminal regions function in the initial binding process, and substrate tRNA is discriminated by the catalytic domain in an induced-fit process. Significance: Study of how proteins recognize RNA is crucial for understanding RNA maturation processes. A conserved guanosine at position 18 (G18) in the D-loop of tRNAs is often modified to 2′-O-methylguanosine (Gm). Formation of Gm18 in eubacterial tRNA is catalyzed by tRNA (Gm18) methyltransferase (TrmH). TrmH enzymes can be divided into two types based on their substrate tRNA specificity. Type I TrmH, including Thermus thermophilus TrmH, can modify all tRNA species, whereas type II TrmH, for example Escherichia coli TrmH, modifies only a subset of tRNA species. Our previous crystal study showed that T. thermophilus TrmH is a class IV S-adenosyl-l-methionine-dependent methyltransferase, which maintains a topological knot structure in the catalytic domain. Because TrmH enzymes have short stretches at the N and C termini instead of a clear RNA binding domain, these stretches are believed to be involved in tRNA recognition. In this study, we demonstrate by site-directed mutagenesis that both N- and C-terminal regions function in tRNA binding. However, in vitro and in vivo chimera protein studies, in which four chimeric proteins of type I and II TrmHs were used, demonstrated that the catalytic domain discriminates substrate tRNAs from nonsubstrate tRNAs. Thus, the N- and C-terminal regions do not function in the substrate tRNA discrimination process. Pre-steady state analysis of complex formation between mutant TrmH proteins and tRNA by stopped-flow fluorescence measurement revealed that the C-terminal region works in the initial binding process, in which nonsubstrate tRNA is not excluded, and that structural movement of the motif 2 region of the catalytic domain in an induced-fit process is involved in substrate tRNA discrimination.

Collaboration


Dive into the Reiko Sakaguchi's collaboration.

Top Co-Authors

Avatar

Ya-Ming Hou

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cuiping Liu

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Georges Lahoud

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar

Howard B. Gamper

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge