Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reimund P. Rötter is active.

Publication


Featured researches published by Reimund P. Rötter.


Global Change Biology | 2015

Multimodel ensembles of wheat growth: many models are better than one.

Pierre Martre; Daniel Wallach; Senthold Asseng; Frank Ewert; James W. Jones; Reimund P. Rötter; Kenneth J. Boote; Alex C. Ruane; Peter J. Thorburn; Davide Cammarano; Jerry L. Hatfield; Cynthia Rosenzweig; Pramod K. Aggarwal; Carlos Angulo; Bruno Basso; Patrick Bertuzzi; Christian Biernath; Nadine Brisson; Andrew J. Challinor; Jordi Doltra; Sebastian Gayler; Richie Goldberg; R. F. Grant; Lee Heng; Josh Hooker; Leslie A. Hunt; Joachim Ingwersen; Roberto C. Izaurralde; Kurt Christian Kersebaum; Christoph Müller

Crop models of crop growth are increasingly used to quantify the impact of global changes due to climate or crop management. Therefore, accuracy of simulation results is a major concern. Studies with ensembles of crop models can give valuable information about model accuracy and uncertainty, but such studies are difficult to organize and have only recently begun. We report on the largest ensemble study to date, of 27 wheat models tested in four contrasting locations for their accuracy in simulating multiple crop growth and yield variables. The relative error averaged over models was 24-38% for the different end-of-season variables including grain yield (GY) and grain protein concentration (GPC). There was little relation between error of a model for GY or GPC and error for in-season variables. Thus, most models did not arrive at accurate simulations of GY and GPC by accurately simulating preceding growth dynamics. Ensemble simulations, taking either the mean (e-mean) or median (e-median) of simulated values, gave better estimates than any individual model when all variables were considered. Compared to individual models, e-median ranked first in simulating measured GY and third in GPC. The error of e-mean and e-median declined with an increasing number of ensemble members, with little decrease beyond 10 models. We conclude that multimodel ensembles can be used to create new estimators with improved accuracy and consistency in simulating growth dynamics. We argue that these results are applicable to other crop species, and hypothesize that they apply more generally to ecological system models.


Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2012

Changes in time of sowing, flowering and maturity of cereals in Europe under climate change

Jørgen E. Olesen; Christen D. Børgesen; L. Elsgaard; Taru Palosuo; Reimund P. Rötter; A.O. Skjelvåg; Pirjo Peltonen-Sainio; T. Börjesson; Mirek Trnka; Frank Ewert; Stefan Siebert; Nadine Brisson; Josef Eitzinger; E.D. van Asselt; Michael Oberforster; H.J. van der Fels-Klerx

The phenological development of cereal crops from emergence through flowering to maturity is largely controlled by temperature, but also affected by day length and potential physiological stresses. Responses may vary between species and varieties. Climate change will affect the timing of cereal crop development, but exact changes will also depend on changes in varieties as affected by plant breeding and variety choices. This study aimed to assess changes in timing of major phenological stages of cereal crops in Northern and Central Europe under climate change. Records on dates of sowing, flowering, and maturity of wheat, oats and maize were collected from field experiments conducted during the period 1985–2009. Data for spring wheat and spring oats covered latitudes from 46 to 64°N, winter wheat from 46 to 61°N, and maize from 47 to 58°N. The number of observations (site–year–variety combinations) varied with phenological phase, but exceeded 2190, 227, 2076 and 1506 for winter wheat, spring wheat, spring oats and maize, respectively. The data were used to fit simple crop development models, assuming that the duration of the period until flowering depends on temperature and day length for wheat and oats, and on temperature for maize, and that the duration of the period from flowering to maturity in all species depends on temperature only. Species-specific base temperatures were used. Sowing date of spring cereals was estimated using a threshold temperature for the mean air temperature during 10 days prior to sowing. The mean estimated temperature thresholds for sowing were 6.1, 7.1 and 10.1°C for oats, wheat and maize, respectively. For spring oats and wheat the temperature threshold increased with latitude. The effective temperature sums required for both flowering and maturity increased with increasing mean annual temperature of the location, indicating that varieties are well adapted to given conditions. The responses of wheat and oats were largest for the period from flowering to maturity. Changes in timing of cereal phenology by 2040 were assessed for two climate model projections according to the observed dependencies on temperature and day length. The results showed advancements of sowing date of spring cereals by 1–3 weeks depending on climate model and region within Europe. The changes were largest in Northern Europe. Timing of flowering and maturity were projected to advance by 1–3 weeks. The changes were largest for grain maize and smallest for winter wheat, and they were generally largest in the western and northern part of the domain. There were considerable differences in predicted timing of sowing, flowering and maturity between the two climate model projections applied.


PLOS ONE | 2016

Impact of Spatial Soil and Climate Input Data Aggregation on Regional Yield Simulations

Holger Hoffmann; Gang Zhao; Senthold Asseng; Marco Bindi; Christian Biernath; Julie Constantin; Elsa Coucheney; R. Dechow; Luca Doro; Henrik Eckersten; Thomas Gaiser; Balázs Grosz; Florian Heinlein; Belay T. Kassie; Kurt Christian Kersebaum; Christian Klein; Matthias Kuhnert; Elisabet Lewan; Marco Moriondo; Claas Nendel; Eckart Priesack; Hélène Raynal; Pier Paolo Roggero; Reimund P. Rötter; Stefan Siebert; Xenia Specka; Fulu Tao; Edmar Teixeira; Giacomo Trombi; Daniel Wallach

We show the error in water-limited yields simulated by crop models which is associated with spatially aggregated soil and climate input data. Crop simulations at large scales (regional, national, continental) frequently use input data of low resolution. Therefore, climate and soil data are often generated via averaging and sampling by area majority. This may bias simulated yields at large scales, varying largely across models. Thus, we evaluated the error associated with spatially aggregated soil and climate data for 14 crop models. Yields of winter wheat and silage maize were simulated under water-limited production conditions. We calculated this error from crop yields simulated at spatial resolutions from 1 to 100 km for the state of North Rhine-Westphalia, Germany. Most models showed yields biased by <15% when aggregating only soil data. The relative mean absolute error (rMAE) of most models using aggregated soil data was in the range or larger than the inter-annual or inter-model variability in yields. This error increased further when both climate and soil data were aggregated. Distinct error patterns indicate that the rMAE may be estimated from few soil variables. Illustrating the range of these aggregation effects across models, this study is a first step towards an ex-ante assessment of aggregation errors in large-scale simulations.


The Journal of Agricultural Science | 2013

Sensitivities of crop models to extreme weather conditions during flowering period demonstrated for maize and winter wheat in Austria

Josef Eitzinger; Sabina Thaler; Erwin Schmid; Franziska Strauss; Roberto Ferrise; Marco Moriondo; Marco Bindi; Taru Palosuo; Reimund P. Rötter; Kurt-Christian Kersebaum; Jørgen E. Olesen; Ravi H. Patil; Levent Şaylan; B. Çaldağ; O. Çaylak

The objective of the present study was to compare the performance of seven different, widely applied crop models in predicting heat and drought stress effects. The study was part of a recent suite of model inter-comparisons initiated at European level and constitutes a component that has been lacking in the analysis of sources of uncertainties in crop models used to study the impacts of climate change. There was a specific focus on the sensitivity of models for winter wheat and maize to extreme weather conditions (heat and drought) during the short but critical period of 2 weeks after the start of flowering. Two locations in Austria, representing different agro-climatic zones and soil conditions, were included in the simulations over 2 years, 2003 and 2004, exhibiting contrasting weather conditions. In addition, soil management was modified at both sites by following either ploughing or minimum tillage. Since no comprehensive field experimental data sets were available, a relative comparison of simulated grain yields and soil moisture contents under defined weather scenarios with modified temperatures and precipitation was performed for a 2-week period after flowering. The results may help to reduce the uncertainty of simulated crop yields to extreme weather conditions through better understanding of the models’ behaviour. Although the crop models considered (DSSAT, EPIC, WOFOST, AQUACROP, FASSET, HERMES and CROPSYST) mostly showed similar trends in simulated grain yields for the different weather scenarios, it was obvious that heat and drought stress caused by changes in temperature and/or precipitation for a short period of 2 weeks resulted in different grain yields simulated by different models. The present study also revealed that the models responded differently to changes in soil tillage practices, which affected soil water storage capacity.


The Journal of Agricultural Science | 2012

Sensitivity of barley varieties to weather in Finland

Kaija Hakala; Lauri Jauhiainen; Sari Himanen; Reimund P. Rötter; Tapio Salo; Helena Kahiluoto

SUMMARY Global climate change is predicted to shift seasonal temperature and precipitation patterns. An increasing frequency of extreme weather events such as heat waves and prolonged droughts is predicted, but there are high levels of uncertainty about the nature of local changes. Crop adaptation will be important in reducing potential damage to agriculture. Crop diversity may enhance resilience to climate variability and changes that are difficult to predict. Therefore, there has to be sufficient diversity within the set of available cultivars in response to weather parameters critical for yield formation. To determine the scale of such ‘weather response diversity’ within barley (Hordeum vulgare L.), an important crop in northern conditions, the yield responses of a wide range of modern and historical varieties were analysed according to a well-defined set of critical agro-meteorological variables. The Finnish long-term dataset of MTT Official Variety Trials was used together with historical weather records of the Finnish Meteorological Institute. The foci of the analysis were firstly to describe the general response of barley to different weather conditions and secondly to reveal the diversity among varieties in the sensitivity to each weather variable. It was established that barley yields were frequently reduced by drought or excessive rain early in the season, by high temperatures at around heading, and by accelerated temperature sum accumulation rates during periods 2 weeks before heading and between heading and yellow ripeness. Low temperatures early in the season increased yields, but frost during the first 4 weeks after sowing had no effect. After canopy establishment, higher precipitation on average resulted in higher yields. In a cultivar-specific analysis, it was found that there were differences in responses to all but three of the studied climatic variables: waterlogging and drought early in the season and temperature sum accumulation rate before heading. The results suggest that low temperatures early in the season, delayed sowing, rain 3–7 weeks after sowing, a temperature change 3–4 weeks after sowing, a high temperature sum accumulation rate from heading to yellow ripeness and high temperatures (⩾25°C) at around heading could mostly be addressed by exploiting the traits found in the range of varieties included in the present study. However, new technology and novel genetic material are needed to enable crops to withstand periods of excessive rain or drought early in the season and to enhance performance under increased temperature sum accumulation rates prior to heading.


Environmental Modelling and Software | 2015

Analysis and classification of data sets for calibration and validation of agro-ecosystem models

Kurt Christian Kersebaum; Kenneth J. Boote; Jason Jorgenson; Claas Nendel; Marco Bindi; C. Frühauf; Thomas Gaiser; Gerrit Hoogenboom; Chris Kollas; Jørgen E. Olesen; Reimund P. Rötter; Françoise Ruget; Peter J. Thorburn; Marián Trnka; Martin Wegehenkel

Experimental field data are used at different levels of complexity to calibrate, validate and improve agro-ecosystem models to enhance their reliability for regional impact assessment. A methodological framework and software are presented to evaluate and classify data sets into four classes regarding their suitability for different modelling purposes. Weighting of inputs and variables for testing was set from the aspect of crop modelling. The software allows users to adjust weights according to their specific requirements. Background information is given for the variables with respect to their relevance for modelling and possible uncertainties. Examples are given for data sets of the different classes. The framework helps to assemble high quality data bases, to select data from data bases according to modellers requirements and gives guidelines to experimentalists for experimental design and decide on the most effective measurements to improve the usefulness of their data for modelling, statistical analysis and data assimilation. A software is presented to classify and label data suitability for modelling.Data requirements for modelling are specific and vary with model purpose.Quantitative classification of data sets facilitates their use for modelling.Test of model and data consistency improves data usability.Guidelines for experimentalist to improve data suitability for modelling.


Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2012

Shifts in comparative advantages for maize, oat and wheat cropping under climate change in Europe

L. Elsgaard; Christen D. Børgesen; Jørgen E. Olesen; Stefan Siebert; Frank Ewert; Pirjo Peltonen-Sainio; Reimund P. Rötter; A.O. Skjelvåg

Climate change is anticipated to affect European agriculture, including the risk of emerging or re-emerging feed and food hazards. Indirectly, climate change may influence such hazards (e.g. the occurrence of mycotoxins) due to geographic shifts in the distribution of major cereal cropping systems and the consequences this may have for crop rotations. This paper analyses the impact of climate on cropping shares of maize, oat and wheat on a 50-km square grid across Europe (45–65°N) and provides model-based estimates of the changes in cropping shares in response to changes in temperature and precipitation as projected for the time period around 2040 by two regional climate models (RCM) with a moderate and a strong climate change signal, respectively. The projected cropping shares are based on the output from the two RCMs and on algorithms derived for the relation between meteorological data and observed cropping shares of maize, oat and wheat. The observed cropping shares show a south-to-north gradient, where maize had its maximum at 45–55°N, oat had its maximum at 55–65°N, and wheat was more evenly distributed along the latitudes in Europe. Under the projected climate changes, there was a general increase in maize cropping shares, whereas for oat no areas showed distinct increases. For wheat, the projected changes indicated a tendency towards higher cropping shares in the northern parts and lower cropping shares in the southern parts of the study area. The present modelling approach represents a simplification of factors determining the distribution of cereal crops, and also some uncertainties in the data basis were apparent. A promising way of future model improvement could be through a systematic analysis and inclusion of other variables, such as key soil properties and socio-economic conditions, influencing the comparative advantages of specific crops.


Ecology and Evolution | 2013

Modelling shifts in agroclimate and crop cultivar response under climate change.

Reimund P. Rötter; J. G. Höhn; Mirek Trnka; Stefan Fronzek; Timothy R. Carter; Helena Kahiluoto

This paper aims: (i) to identify at national scale areas where crop yield formation is currently most prone to climate-induced stresses, (ii) to evaluate how the severity of these stresses is likely to develop in time and space, and (iii) to appraise and quantify the performance of two strategies for adapting crop cultivation to a wide range of (uncertain) climate change projections. To this end we made use of extensive climate, crop, and soil data, and of two modelling tools: N-AgriCLIM and the WOFOST crop simulation model. N-AgriCLIM was developed for the automatic generation of indicators describing basic agroclimatic conditions and was applied over the whole of Finland. WOFOST was used to simulate detailed crop responses at four representative locations. N-AgriCLIM calculations have been performed nationally for 3829 grid boxes at a 10 × 10 km resolution and for 32 climate scenarios. Ranges of projected shifts in indicator values for heat, drought and other crop-relevant stresses across the scenarios vary widely – so do the spatial patterns of change. Overall, under reference climate the most risk-prone areas for spring cereals are found in south-west Finland, shifting to south-east Finland towards the end of this century. Conditions for grass are likely to improve. WOFOST simulation results suggest that CO2 fertilization and adjusted sowing combined can lead to small yield increases of current barley cultivars under most climate scenarios on favourable soils, but not under extreme climate scenarios and poor soils. This information can be valuable for appraising alternative adaptation strategies. It facilitates the identification of regions in which climatic changes might be rapid or otherwise notable for crop production, requiring a more detailed evaluation of adaptation measures. The results also suggest that utilizing the diversity of cultivar responses seems beneficial given the high uncertainty in climate change projections.


Agricultural Systems | 1997

Variations in yield response to fertilizer application in the tropics: II. risks and opportunities for smallholders cultivating maize on Kenya's arable land

Reimund P. Rötter; H. van Keulen

Abstract Risks and opportunities associated with maize production and fertilizer use under rainfed conditions in Kenya, mainly resulting from rainfall variability, and possible effects of variations in cost/price ratios (fertilizer/product) were identified for a cross-section of Kenyas climate-soil-maize growing environments. Production and financial risks, as well as opportunities, were quantified for maize cultivated in various agro-ecological zones (AEZ) of Kenya under alternative management practices, with special reference to nitrogen and phosphorus fertilizer application. Comparison of results of different management practices under given climate-soil-maize cultivar combinations and results from selective sensitivity analyses gave indications for the scope for adaptation to potential risks. The risk assessment approach based on crop growth modelling is suitable for taking different production goals and attitudes towards risk of farmers into account.


Nature plants | 2017

The uncertainty of crop yield projections is reduced by improved temperature response functions

Enli Wang; Pierre Martre; Zhigan Zhao; Frank Ewert; Andrea Maiorano; Reimund P. Rötter; Bruce A. Kimball; Michael J. Ottman; Gerard W. Wall; Jeffrey W. White; Matthew P. Reynolds; Phillip D. Alderman; Pramod K. Aggarwal; Jakarat Anothai; Bruno Basso; Christian Biernath; Davide Cammarano; Andrew J. Challinor; Giacomo De Sanctis; Jordi Doltra; E. Fereres; Margarita Garcia-Vila; Sebastian Gayler; Gerrit Hoogenboom; Leslie A. Hunt; Roberto C. Izaurralde; Mohamed Jabloun; Curtis D. Jones; Kurt Christian Kersebaum; Ann-Kristin Koehler

Increasing the accuracy of crop productivity estimates is a key element in planning adaptation strategies to ensure global food security under climate change. Process-based crop models are effective means to project climate impact on crop yield, but have large uncertainty in yield simulations. Here, we show that variations in the mathematical functions currently used to simulate temperature responses of physiological processes in 29 wheat models account for >50% of uncertainty in simulated grain yields for mean growing season temperatures from 14 °C to 33 °C. We derived a set of new temperature response functions that when substituted in four wheat models reduced the error in grain yield simulations across seven global sites with different temperature regimes by 19% to 50% (42% average). We anticipate the improved temperature responses to be a key step to improve modelling of crops under rising temperature and climate change, leading to higher skill of crop yield projections.

Collaboration


Dive into the Reimund P. Rötter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Taru Palosuo

European Forest Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Bindi

University of Florence

View shared research outputs
Top Co-Authors

Avatar

Fulu Tao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge