Reinald Kim Amplayo
Yonsei University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Reinald Kim Amplayo.
data and knowledge engineering | 2017
Reinald Kim Amplayo; Min Song
Abstract In this study, we present a novel method in generating summaries of multiple online reviews using a fine-grained sentiment extraction model for short texts, which is adaptable to different domains and languages. Adaptability of a model is defined as its ability to be easily modified and be usable on different domains and languages. This is important because of the diversity of domains and languages available. The fine-grained sentiment extraction model is divided into two methods: sentiment classification and aspect extraction. The sentiment classifier is built using a three-level classification approach, while the aspect extractor is built using extended biterm topic model (eBTM), an extension of LDA topic model for short texts. Overall, results show that the sentiment classifier outperforms baseline models and industry-standard classifiers while the aspect extractor outperforms other topic models in terms of aspect diversity and aspect extracting power. In addition, using the Naver movies dataset, we show that online review summarization can be effectively constructed using the proposed methods by comparing the results of our method and the results of a movie awards ceremony.
international joint conference on artificial intelligence | 2018
Reinald Kim Amplayo; Kyungjae Lee; Jinyeong Yeo; Seung-won Hwang
In sentence classification tasks, additional contexts, such as the neighboring sentences, may improve the accuracy of the classifier. However, such contexts are domain-dependent and thus cannot be used for another classification task with an inappropriate domain. In contrast, we propose the use of translated sentences as context that is always available regardless of the domain. We find that naive feature expansion of translations gains only marginal improvements and may decrease the performance of the classifier, due to possible inaccurate translations thus producing noisy sentence vectors. To this end, we present multiple context fixing attachment (MCFA), a series of modules attached to multiple sentence vectors to fix the noise in the vectors using the other sentence vectors as context. We show that our method performs competitively compared to previous models, achieving best classification performance on multiple data sets. We are the first to use translations as domain-free contexts for sentence classification.
Information Sciences | 2018
Reinald Kim Amplayo; Su Lyn Hong; Min Song
Abstract We present a method to detect the novelty of a research paper. Because novelty in scholarly literature also examines the larger research community, a network-based approach for extracting features is proposed. Two graphs are introduced, a macro-level graph, where authors and documents are used as nodes, and a micro-level graph, where keywords, topics, and words are used as nodes. After constructing the seed graph, papers are incrementally added while changes in the graph are recorded as the feature set of a paper. An autoencoder neural network is then used as the novelty detection model. The experimental results show that the commonly used text feature representations, TF-IDF and one-class SVM, are not suitable for detecting the novelty of a research paper. Among the constructed graphs, keyword-level graph features exhibit the best performance using regression analysis as the metric. We also combine the macro-level graph, micro-level graph, and all features and find that the combination of keywords, topics, and word features perform the best using regression and citation count analysis. Other factors that could affect the citation counts, impact, and audience, are also discussed.
Information Sciences | 2018
Reinald Kim Amplayo; Seanie Lee; Min Song
Abstract Sentiment topic models are used as unsupervised methods to solve the specific problems of the general aspect-based sentiment analysis (ABSA) problem. One of the main problems of the technique is its substandard aspect term extraction, which leads to difficulties in aspect label determination. This paper is focused on improving the aspect term extraction of topic models by incorporating product descriptions to the current state-of-the-art sentiment topic model, Aspect Sentiment Unification Model (ASUM). We present two models that extend from ASUM differently to leverage on the information found in the product description: Seller-aided Aspect-based Sentiment Model (SA-ASM) and Seller-aided Product-based Sentiment Model (SA-PSM). SA-ASM has its topic distribution inside the review while SA-PSM has its topic distribution inside the product description. Based on experiments conducted to reviews of laptops and mobile phones, results show that SA-ASM performs better in micro-level problems such as sentiment classification and aspect assignment and SA-PSM performs better in macro-level problems like aspect category detection. Both models achieve better performances compared to current topic modeling methods for the ABSA problem.
international conference on data mining | 2017
Reinald Kim Amplayo; Seung-won Hwang
This paper aims at an aspect sentiment model for aspect-based sentiment analysis (ABSA) focused on micro reviews. This task is important in order to understand short reviews majority of the users write, while existing topic models are targeted for expert-level long reviews with sufficient co-occurrence patterns to observe. Current methods on aggregating micro reviews using metadata information may not be effective as well due to metadata absence, topical heterogeneity, and cold start problems. To this end, we propose a model called Micro Aspect Sentiment Model (MicroASM). MicroASM is based on the observation that short reviews 1) are viewed with sentiment-aspect word pairs as building blocks of information, and 2) can be clustered into larger reviews. When compared to the current state-of-the-art aspect sentiment models, experiments show that our model provides better performance on aspect-level tasks such as aspect term extraction and document-level tasks such as sentiment classification.
north american chapter of the association for computational linguistics | 2018
Reinald Kim Amplayo; Seonjae Lim; Seung-won Hwang
north american chapter of the association for computational linguistics | 2018
Reinald Kim Amplayo; Seonjae Lim; Seung-won Hwang
meeting of the association for computational linguistics | 2018
Reinald Kim Amplayo; Jihyeok Kim; Sua Sung; Seung-won Hwang
meeting of the association for computational linguistics | 2018
Reinald Kim Amplayo; Jihyeok Kim; Sua Sung; Seung-won Hwang
language resources and evaluation | 2018
Jinyoung Yeo; Gyeongbok Lee; Gengyu Wang; Seungtaek Choi; Hyunsouk Cho; Reinald Kim Amplayo; Seung-won Hwang