Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reiner Lomoth is active.

Publication


Featured researches published by Reiner Lomoth.


Accounts of Chemical Research | 2009

Biomimetic and Microbial Approaches to Solar Fuel Generation

Ann Magnuson; Magnus F. Anderlund; Olof Johansson; Peter Lindblad; Reiner Lomoth; Tomáš Polívka; Sascha Ott; Karin Stensjö; Stenbjörn Styring; Villy Sundström; Leif Hammarström

Photosynthesis is performed by a multitude of organisms, but in nearly all cases, it is variations on a common theme: absorption of light followed by energy transfer to a reaction center where charge separation takes place. This initial form of chemical energy is stabilized by the biosynthesis of carbohydrates. To produce these energy-rich products, a substrate is needed that feeds in reductive equivalents. When photosynthetic microorganisms learned to use water as a substrate some 2 billion years ago, a fundamental barrier against unlimited use of solar energy was overcome. The possibility of solar energy use has inspired researchers to construct artificial photosynthetic systems that show analogy to parts of the intricate molecular machinery of photosynthesis. Recent years have seen a reorientation of efforts toward creating integrated light-to-fuel systems that can use solar energy for direct synthesis of energy-rich compounds, so-called solar fuels. Sustainable production of solar fuels is a long awaited development that promises extensive solar energy use combined with long-term storage. The stoichiometry of water splitting into molecular oxygen, protons, and electrons is deceptively simple; achieving it by chemical catalysis has proven remarkably difficult. The reaction center Photosystem II couples light-induced charge separation to an efficient molecular water-splitting catalyst, a Mn(4)Ca complex, and is thus an important template for biomimetic chemistry. In our aims to design biomimetic manganese complexes for light-driven water oxidation, we link photosensitizers and charge-separation motifs to potential catalysts in supramolecular assemblies. In photosynthesis, production of carbohydrates demands the delivery of multiple reducing equivalents to CO(2). In contrast, the two-electron reduction of protons to molecular hydrogen is much less demanding. Virtually all microorganisms have enzymes called hydrogenases that convert protons to hydrogen, many of them with good catalytic efficiency. The catalytic sites of hydrogenases are now the center of attention of biomimetic efforts, providing prospects for catalytic hydrogen production with inexpensive metals. Thus, we might complete the water-to-fuel conversion: light + 2H(2)O --> 2H(2) + O(2). This reaction formula is to some extent already elegantly fulfilled by cyanobacteria and green algae, water-splitting photosynthetic microorganisms that under certain conditions also can produce hydrogen. An alternative route to hydrogen from solar energy is therefore to engineer these organisms to produce hydrogen more efficiently. This Account describes our original approach to combine research in these two fields: mimicking structural and functional principles of both Photosystem II and hydrogenases by synthetic chemistry and engineering cyanobacteria to become better hydrogen producers and ultimately developing new routes toward synthetic biology.


Chemistry: A European Journal | 2010

High-Turnover Photochemical Hydrogen Production Catalyzed by a Model Complex of the [FeFe]-Hydrogenase Active Site

Daniel Streich; Yeni Astuti; Michele Orlandi; Lennart Schwartz; Reiner Lomoth; Leif Hammarström; Sascha Ott

In light of its rapidly growing energy demand, human society has an urgent need to become much more strongly reliant on renewable and sustainable energy carriers. Molecular hydrogen made from water with solar energy could provide an ideal case. The development of inexpensive, robust and rare element free catalysts is crucial for this technology to succeed. Enzymes in nature can give us ideas about what such catalysts could look like, but for the directed adjustment of any natural or synthetic catalyst to the requirements of large scale catalysis, its capabilities and limitations need to be understood on the level of individual reaction steps. This thesis deals with kinetic and mechanistic investigations of photo- and electrocatalytic hydrogen production with natural and synthetic molecular catalysts. Photochemical hydrogen production can be achieved with both E. coli Hyd-2 [NiFe] hydrogenase and a synthetic dinuclear [FeFe] hydrogenase active site model by ruthenium polypyridyl photosensitization. The overall quantum yields are on the order of several percent. Transient UV-Vis absorption experiments reveal that these yields are strongly controlled by the competition of charge recombination reactions with catalysis. With the hydrogenase major electron losses occur at the stage of enzyme reduction by the reduced photosensitizer. In contrast, catalyst reduction is very efficient in case of the synthetic dinuclear active site model. Here, losses presumably occur at the stage of reduced catalyst intermediates. Moreover, the synthetic catalyst is prone to structural changes induced by competing ligands such as secondary amines or DMF, which lead to catalytically active, potentially mononuclear, species. Investigations of electrocatalytic hydrogen production with a mononuclear catalyst by cyclic voltammetry provide detailed kinetic and mechanistic information on the catalyst itself. By extension of existing theory, it is possible to distinguish between alternative catalytic pathways and to extract rate constants for individual steps of catalysis. The equilibrium constant for catalyst protonation can be determined, and limits can be set on both the protonation and deprotonation rate constant. Hydrogen bond formation likely involves two catalyst molecules, and even the second order rate constant characterizing hydrogen bond formation and/or release can be determined.


Angewandte Chemie | 2010

Catalytic Hydrogen Evolution from Mononuclear Iron(II) Carbonyl Complexes as Minimal Functional Models of the [FeFe] Hydrogenase Active Site

Sandeep Kaur-Ghumaan; Lennart Schwartz; Reiner Lomoth; Matthias Stein; Sascha Ott

How much iron does it take? Mononuclear complexes [FeII(3,6-R2bdt)(CO)2(PMe3)2] (bdt=1,2-C6H4(S−)2; R=H, Cl) can be reversibly protonated at the sulfur ligands, can catalyze the electrochemical red ...


Dalton Transactions | 2009

Introducing a dark reaction to photochemistry: photocatalytic hydrogen from [FeFe] hydrogenase active site model complexes

Reiner Lomoth; Sascha Ott

The light-driven splitting of water into its constituting elements gives access to a valuable fuel from an abundant substrate, using sunlight as the only energy source. Synthetic diiron complexes as functional models of the [FeFe] hydrogenase H2ase enzyme active site have moved into the centre of focus as potentially viable catalysts for the reductive side of this process, i.e. the reduction of protons to molecular hydrogen. The active site of the enzyme, as well as its mimics in an artificial system, are required to accumulate two electrons from single electron transfer events and to combine them with two protons to form hydrogen. Whereas in biology this reaction is not coupled to photosynthesis and thus proceeds in the dark, additional aspects need to be considered when designing a functional artificial system for the light-driven reduction of protons. Suitable photosensitizers have to be chosen that not only provide sufficient driving force for the reduction of the synthetic diiron catalyst, but also allow for selective excitation to minimize photodegradation. Electron transfer efficiencies have to be optimized for all steps and the sequential nature of the catalyst reduction requires a sufficient stability of potentially labile intermediates of the catalytic cycle. In this perspective, systems for the light-driven conversion of protons to molecular hydrogen are discussed where the catalyst is based on model complexes of the [FeFe] H2ase active site. Covalently linked dyads, supramolecular assemblies and multi-component systems will be examined with an emphasis on mechanistic electron transfer schemes, the properties of the individual components, their scope and their potential limitations.


Energy and Environmental Science | 2011

Spectroscopically characterized intermediates of catalytic H2 formation by [FeFe] hydrogenase models

Stefanie Tschierlei; Sascha Ott; Reiner Lomoth

This review compiles species that are known or potential intermediates in the catalytic formation of H2 by diiron dithiolate complexes inspired by the active site of the [FeFe] hydrogenases. The data collection emphasizes spectroscopic characteristics (NMR, IR, UV-Vis, EPR) of protonated and reduced derivatives of the iron complexes that could provide reference data to the identification of intermediates in mechanistic studies.


Photosynthesis Research | 2006

Mimicking the electron donor side of Photosystem II in artificial photosynthesis

Reiner Lomoth; Ann Magnuson; Martin Sjödin; Ping Huang; Stenbjörn Styring; Leif Hammarström

This review focuses on our recent efforts in synthetic ruthenium–tyrosine–manganese chemistry mimicking the donor side reactions of Photosystem II. Tyrosine and tryptophan residues were linked to ruthenium photosensitizers, which resulted in model complexes for proton-coupled electron transfer from amino acids. A new mechanistic model was proposed and used to design complexes in which the mechanism could be switched between concerted and step-wise proton-coupled electron transfer. Moreover, a manganese dimer linked to a ruthenium complex could be oxidized in three successive steps, from Mn2II,II to Mn2III,IV by the photo-oxidized ruthenium sensitizer. This was possible thanks to a charge compensating ligand exchange in the manganese complex. Detailed studies of the ligand exchange suggested that at high water concentrations, each oxidation step is coupled to a proton-release of water-derived ligands, analogous to the oxidation steps of the manganese cluster of Photosystem II.


Journal of Inorganic Biochemistry | 2002

Photo-induced oxidation of a dinuclear Mn(2)(II,II) complex to the Mn(2)(III,IV) state by inter- and intramolecular electron transfer to Ru(III)tris-bipyridine.

Ping Huang; Ann Magnuson; Reiner Lomoth; Malin Abrahamsson; M Tamm; Licheng Sun; B. van Rotterdam; Jonathan Park; Leif Hammarström; Björn Åkermark; Stenbjörn Styring

To model the structural and functional parts of the water oxidizing complex in Photosystem II, a dimeric manganese(II,II) complex (1) was linked to a ruthenium(II)tris-bipyridine (Ru(II)(bpy)(3)) complex via a substituted L-tyrosine, to form the trinuclear complex 2 [J. Inorg. Biochem. 78 (2000) 15]. Flash photolysis of 1 and Ru(II)(bpy)(3) in aqueous solution, in the presence of an electron acceptor, resulted in the stepwise extraction of three electrons by Ru(III)(bpy)(3) from the Mn(2)(II,II) dimer, which then attained the Mn(2)(III,IV) oxidation state. In a similar experiment with compound 2, the dinuclear Mn complex reduced the photo-oxidized Ru moiety via intramolecular electron transfer on each photochemical event. From EPR it was seen that 2 also reached the Mn(2)(III,IV) state. Our data indicate that oxidation from the Mn(2)(II,II) state proceeds stepwise via intermediate formation of Mn(2)(II,III) and Mn(2)(III,III). In the presence of water, cyclic voltammetry showed an additional anodic peak beyond Mn(2)(II,III/III,III) oxidation which was significantly lower than in neat acetonitrile. Assuming that this peak is due to oxidation to Mn(2)(III,IV), this suggests that water is essential for the formation of the Mn(2)(III,IV) oxidation state. Compound 2 is a structural mimic of the water oxidizing complex, in that it links a Mn complex via a tyrosine to a highly oxidizing photosensitizer. Complex 2 also mimics mechanistic aspects of Photosystem II, in that the electron transfer to the photosensitizer is fast and results in several electron extractions from the Mn moiety.


Nature Chemistry | 2015

Iron sensitizer converts light to electrons with 92% yield

Tobias Harlang; Yizhu Liu; Olga Gordivska; Lisa A. Fredin; Carlito S. Ponseca; Ping Huang; Pavel Chábera; Kasper Skov Kjær; Helena Mateos; Jens Uhlig; Reiner Lomoth; Reine Wallenberg; Stenbjörn Styring; Petter Persson; Villy Sundström; Kenneth Wärnmark

Solar energy conversion in photovoltaics or photocatalysis involves light harvesting, or sensitization, of a semiconductor or catalyst as a first step. Rare elements are frequently used for this purpose, but they are obviously not ideal for large-scale implementation. Great efforts have been made to replace the widely used ruthenium with more abundant analogues like iron, but without much success due to the very short-lived excited states of the resulting iron complexes. Here, we describe the development of an iron-nitrogen-heterocyclic-carbene sensitizer with an excited-state lifetime that is nearly a thousand-fold longer than that of traditional iron polypyridyl complexes. By the use of electron paramagnetic resonance, transient absorption spectroscopy, transient terahertz spectroscopy and quantum chemical calculations, we show that the iron complex generates photoelectrons in the conduction band of titanium dioxide with a quantum yield of 92% from the (3)MLCT (metal-to-ligand charge transfer) state. These results open up possibilities to develop solar energy-converting materials based on abundant elements.


Chemical Communications | 2013

Towards longer-lived metal-to-ligand charge transfer states of iron(ii) complexes: an N-heterocyclic carbene approach.

Yizhu Liu; Tobias Harlang; Sophie E. Canton; Pavel Chabera; Karina Suarez-Alcantara; André Fleckhaus; Dimali A. Vithanage; Erik Göransson; Alice Corani; Reiner Lomoth; Villy Sundström; Kenneth Wärnmark

A 9 ps (3)MLCT lifetime was achieved by a Fe(II) complex based on C(NHC)^N(py)^C(NHC) pincer ligands. This is the longest known so far for any kind of complexes of this abundant metal, and increased by almost two orders of magnitude compared to the reference Fe(II) bis-terpyridine complex.


Dalton Transactions | 2008

Influence of an electron-deficient bridging o-carborane on the electronic properties of an [FeFe] hydrogenase active site model

Lennart Schwartz; Lars Eriksson; Reiner Lomoth; Francesc Teixidor; Clara Viñas; Sascha Ott

The IR carbonyl stretching frequencies of [Fe2(SRS)(CO)6] complexes correlate well with their first reduction potential; an [FeFe] hydrogenase model with a very mild reduction potential has been realized by using a strongly electron deficient carborane-dithiolate bridge.

Collaboration


Dive into the Reiner Lomoth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Licheng Sun

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge