Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reinhard Blickhan is active.

Publication


Featured researches published by Reinhard Blickhan.


Journal of Biomechanics | 1989

The spring-mass model for running and hopping.

Reinhard Blickhan

A simple spring-mass model consisting of a massless spring attached to a point mass describes the interdependency of mechanical parameters characterizing running and hopping of humans as a function of speed. The bouncing mechanism itself results in a confinement of the free parameter space where solutions can be found. In particular, bouncing frequency and vertical displacement are closely related. Only a few parameters, such as the vector of the specific landing velocity and the specific leg length, are sufficient to determine the point of operation of the system. There are more physiological constraints than independent parameters. As constraints limit the parameter space where hopping is possible, they must be tuned to each other in order to allow for hopping at all. Within the range of physiologically possible hopping frequencies, a human hopper selects a frequency where the largest amount of energy can be delivered and still be stored elastically. During running and hopping animals use flat angles of the landing velocity resulting in maximum contact length. In this situation ground reaction force is proportional to specific contact time and total displacement is proportional to the square of the step duration. Contact time and hopping frequency are not simply determined by the natural frequency of the spring-mass system, but are influenced largely by the vector of the landing velocity. Differences in the aerial phase or in the angle of the landing velocity result in the different kinematic and dynamic patterns observed during running and hopping. Despite these differences, the model predicts the mass specific energy fluctuations of the center of mass per distance to be similar for runners and hoppers and similar to empirical data obtained for animals of various size.


Proceedings of the Royal Society of London B: Biological Sciences | 2006

Compliant leg behaviour explains basic dynamics of walking and running

Hartmut Geyer; Andre Seyfarth; Reinhard Blickhan

The basic mechanics of human locomotion are associated with vaulting over stiff legs in walking and rebounding on compliant legs in running. However, while rebounding legs well explain the stance dynamics of running, stiff legs cannot reproduce that of walking. With a simple bipedal spring–mass model, we show that not stiff but compliant legs are essential to obtain the basic walking mechanics; incorporating the double support as an essential part of the walking motion, the model reproduces the characteristic stance dynamics that result in the observed small vertical oscillation of the body and the observed out-of-phase changes in forward kinetic and gravitational potential energies. Exploring the parameter space of this model, we further show that it not only combines the basic dynamics of walking and running in one mechanical system, but also reveals these gaits to be just two out of the many solutions to legged locomotion offered by compliant leg behaviour and accessed by energy or speed.


Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 1993

Similarity in multilegged locomotion: Bouncing like a monopode

Reinhard Blickhan; Robert J. Full

Despite impressive variation in leg number, length, position and type of skeleton, similarities of legged, pedestrian locomotion exist in energetics, gait, stride frequency and ground-reaction force. Analysis of data available in the literature showed that a bouncing, spring-mass, monopode model can approximate the energetics and dynamics of trotting, running, and hopping in animals as diverse as cockroaches, quail and kangaroos. From an animals mechanical-energy fluctuation and ground-reaction force, we calculated the compression of a virtual monopodes leg and its stiffness. Comparison of dimensionless parameters revealed that locomotor dynamics depend on gait and leg number and not on body mass. Relative stiffness per leg was similar for all animals and appears to be a very conservative quantity in the design of legged locomotor systems. Differences in the general dynamics of gait are based largely on the number of legs acting simultaneously to determine the total stiffness of the system. Four- and six-legged trotters had a greater whole body stiffness than two-legged runners operating their systems at about the same relative speed. The greater whole body stiffness in trotters resulted in a smaller compression of the virtual leg and a higher natural frequency and stride frequency.


Journal of Biomechanics | 2002

A movement criterion for running.

Andre Seyfarth; Hartmut Geyer; Michael Günther; Reinhard Blickhan

The adjustment of the leg during running was addressed using a spring-mass model with a fixed landing angle of attack. The objective was to obtain periodic movement patterns. Spring-like running was monitored by a one-dimensional stride-to-stride mapping of the apex height to identify mechanically stable fixed points. We found that for certain angles of attack, the system becomes self-stabilized if the leg stiffness was properly adjusted and a minimum running speed was exceeded. At a given speed, running techniques fulfilling a stable movement pattern are characterized by an almost constant maximum leg force. With increasing speed, the leg adjustment becomes less critical. The techniques predicted for stable running are in agreement with experimental studies. Mechanically self-stabilized running requires a spring-like leg operation, a minimum running speed and a proper adjustment of leg stiffness and angle of attack. These conditions can be considered as a movement criterion for running.


Proceedings of the Royal Society of London B: Biological Sciences | 2003

Positive force feedback in bouncing gaits

Hartmut Geyer; Andre Seyfarth; Reinhard Blickhan

During bouncing gaits (running, hopping, trotting), passive compliant structures (e.g. tendons, ligaments) store and release part of the stride energy. Here, active muscles must provide the required force to withstand the developing tendon strain and to compensate for the inevitable energy losses. This requires an appropriate control of muscle activation. In this study, for hopping, the potential involvement of afferent information from muscle receptors (muscle spindles, Golgi tendon organs) is investigated using a two–segment leg model with one extensor muscle. It is found that: (i) positive feedbacks of muscle–fibre length and muscle force can result in periodic bouncing; (ii) positive force feedback (F+) stabilizes bouncing patterns within a large range of stride energies (maximum hopping height of 16.3 cm, almost twofold higher than the length feedback); and (iii) when employing this reflex scheme, for moderate hopping heights (up to 8.8 cm), an overall elastic leg behaviour is predicted (hopping frequency of 1.4–3 Hz, leg stiffness of 9−27 kN m−1). Furthermore, F+ could stabilize running. It is suggested that, during the stance phase of bouncing tasks, the reflex–generated motor control based on feedbacks might be an efficient and reliable alternative to central motor commands.


Philosophical Transactions of the Royal Society A | 2007

Intelligence by mechanics.

Reinhard Blickhan; Andre Seyfarth; Hartmut Geyer; Sten Grimmer; Heiko Wagner; Michael Günther

Research on the biomechanics of animal and human locomotion provides insight into basic principles of locomotion and respective implications for construction and control. Nearly elastic operation of the leg is necessary to reproduce the basic dynamics in walking and running. Elastic leg operation can be modelled with a spring-mass model. This model can be used as a template with respect to both gaits in the construction and control of legged machines. With respect to the segmented leg, the humanoid arrangement saves energy and ensures structural stability. With the quasi-elastic operation the leg inherits the property of self-stability, i.e. the ability to stabilize a system in the presence of disturbances without sensing the disturbance or its direct effects. Self-stability can be conserved in the presence of musculature with its crucial damping property. To ensure secure foothold visco-elastic suspended muscles serve as shock absorbers. Experiments with technically implemented leg models, which explore some of these principles, are promising.


Journal of Biomechanics | 2002

Joint stiffness of the ankle and the knee in running

Michael Günther; Reinhard Blickhan

The spring-mass model is a valid fundament to understand global dynamics of fast legged locomotion under gravity. The underlying concept of elasticity, implying leg stiffness as a crucial parameter, is also found on lower motor control levels, i.e. in muscle-reflex and muscle-tendon systems. Therefore, it seems reasonable that global leg stiffness emerges from local elasticity established by appropriate joint torques. A recently published model of an elastically operating, segmented leg predicts that proper adjustment of joint elasticities to the leg geometry and initial conditions of ground contact provides internal leg stability. Another recent study suggests that in turn the leg segmentation and the initial conditions may be a consequence of metabolic and bone stress constraints. In this study, the theoretical predictions were verified experimentally with respect to initial conditions and elastic joint characteristics in human running. Kinematics and kinetics were measured and the joint torques were estimated by inverse dynamics. Stiffnesses and elastic nonlinearities describing the resulting joint characteristics were extracted from parameter fits. Our results clearly support the theoretical predictions: the knee joint is always stiffer and more extended than the ankle joint. Moreover, the knee torque characteristic on the average shows the higher nonlinearity. According to literature, the leg geometry is a consequence of metabolic and material stress limitations. Adapted to this given geometry, the initial joint angle conditions in fast locomotion are a compromise between metabolic and control effort minimisation. Based on this adaptation, an appropriate joint stiffness ratio between ankle and knee passively safeguards the internal leg stability. The identified joint nonlinearities contribute to the linearisation of the leg spring.


Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 1991

The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans

H. Bleckmann; T. Breithaupt; Reinhard Blickhan; J. Tautz

SummaryIn the present study the time course and spectral-amplitude distribution of hydrodynamic flow fields caused by moving fish, frogs, and crustaceans were investigated with the aid of laser-Doppler-anemometry. In the vicinity of a hovering fish sinusoidal water movements can be recorded whose velocity spectra peak below 10 Hz (Fig. 2). Single strokes during startle responses or during steady swimming of fish, frogs, and crustaceans cause short-lasting, low-frequency (<10 Hz), transient water movements (Fig. 3). Low-frequency transients also occur if a frog approaches and passes a velocity-sensitive hydrodynamic sensor. In contrast, transient water movements caused by a rapidly struggling or startled fish or water motions measured in the wake of a slowly swimming (≤47 cm/s) trout can be broadbanded, i.e., these water movements can contain frequency components up to at least 100 Hz (Figs. 4, 5A, 6). High-frequency hydrodynamic events can also be measured behind obstacles submerged in running water (Fig. 5C). The possible biological advantage of the ability to detect high-frequency hydroynamic events is discussed with respect to the natural occurrence of high frequencies and its potential role in orientation and predator-prey interactions of aquatic animals.


Proceedings of the Royal Society of London. Series B, Biological Sciences | 2000

The function of resilin in beetle wings

Fabian Haas; Stanislav N. Gorb; Reinhard Blickhan

This account shows the distribution of elastic elements in hind wings in the scarabaeid Pachnoda marginata and coccinellid Coccinella septempunctata (both Coleoptera). Occurrence of resilin, a rubber–like protein, in some mobile joints together with data on wing unfolding and flight kinematics suggest that resilin in the beetle wing has multiple functions. First, the distribution pattern of resilin in the wing correlates with the particular folding pattern of the wing. Second, our data show that resilin occurs at the places where extra elasticity is needed, for example in wing folds, to prevent material damage during repeated folding and unfolding. Third, resilin provides the wing with elasticity in order to be deformable by aerodynamic forces. This may result in elastic energy storage in the wing.


Journal of Biomechanics | 1999

Dynamics of the long jump

Andre Seyfarth; A. Friedrichs; V. Wank; Reinhard Blickhan

A mechanical model is proposed which quantitatively describes the dynamics of the centre of gravity (c.g.) during the take-off phase of the long jump. The model entails a minimal but necessary number of components: a linear leg spring with the ability of lengthening to describe the active peak of the force time curve and a distal mass coupled with nonlinear visco-elastic elements to describe the passive peak. The influence of the positions and velocities of the supported body and the jumpers leg as well as of systemic parameters such as leg stiffness and mass distribution on the jumping distance were investigated. Techniques for optimum operation are identified: (1) There is a minimum stiffness for optimum performance. Further increase of the stiffness does not lead to longer jumps. (2) For any given stiffness there is always an optimum angle of attack. (3) The same distance can be achieved by different techniques. (4) The losses due to deceleration of the supporting leg do not result in reduced jumping distance as this deceleration results in a higher vertical momentum. (5) Thus, increasing the touch-down velocity of the jumpers supporting leg increases jumping distance.

Collaboration


Dive into the Reinhard Blickhan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andre Seyfarth

Technische Universität Darmstadt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge