Reinhard Wirth
University of Regensburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Reinhard Wirth.
Infection and Immunity | 2000
Sigurd D. Süßmuth; Albrecht Muscholl-Silberhorn; Reinhard Wirth; Milorad Šuša; Reinhard Marre; Eva Rozdzinski
ABSTRACT The aggregation substance (AS) of Enterococcus faecalis, encoded on sex pheromone plasmids, is a surface-bound glycoprotein that mediates aggregation between bacteria thereby facilitating plasmid transfer. Sequencing of the pAD1-encoded Asa1 revealed that this surface protein contains two RGD motifs which are known to ligate integrins. Therefore, we investigated the influence of AS on the interaction of E. faecalis with human monocyte-derived macrophages which constitutively express β2 integrins (e.g., CD18). AS was found to cause a greater-than-fivefold increase in enterococcal adherence to macrophages and a greater-than-sevenfold increase in phagocytosis. Adherence was mediated by an interaction between the RGD motif and the integrin CD11b/CD18 (complement receptor type 3) as demonstrated by inhibition studies with monoclonal antibodies and RGD peptide. AS-bearing enterococci were significantly more resistant to macrophage killing during the first 3 h postinfection, probably due to inhibition of the respiratory burst as indicated by reduced concentrations of superoxide anion.
Molecular Microbiology | 2012
Kerstin Lassak; Tomasz Neiner; Abhrajyoti Ghosh; Andreas Klingl; Reinhard Wirth; Sonja-Verena Albers
The ability to move towards favourable conditions provides fundamental advantages to organisms. Interestingly, flagella as motility structures evolved independently in the bacterial and the archaeal kingdom. Whereas bacterial flagella have been intensively studied, our knowledge regarding the archaeal counterpart is mostly restricted to Euryarchaeota rather than crenarchaeal flagella. We therefore investigated the flagellar assembly system of the crenarchaeal model organism Sulfolobus acidocaldarius in vivo. Promoter studies and qRT‐PCR analyses of the flagella gene cluster provided evidence that the expression of the fla genes was induced by tryptone starvation. Moreover, we confirmed presence of a secondary fla promoter within the flaB gene that regulates the transcription of downstream genes flaX‐J. Markerless in‐frame deletions for all fla genes encoded in the fla gene cluster were constructed. Western blot analysis of all fla deletion strains suggested hierarchical protein interactions during the archaeal flagella assembly. Moreover, functional analysis by thermomicroscopy revealed non‐motile cells for each of the mutant strains. Electron micrographs demonstrated that lack of motility coincided with the loss of flagellar assembly. Thus we demonstrated that all seven fla genes are essential for crenarchaeal flagellum assembly and function.
Applied and Environmental Microbiology | 2009
Michaela Stieglmeier; Reinhard Wirth; Gerhard Kminek; Christine Moissl-Eichinger
ABSTRACT In the course of this biodiversity study, the cultivable microbial community of European spacecraft-associated clean rooms and the Herschel Space Observatory located therein were analyzed during routine assembly operations. Here, we focused on microorganisms capable of growing without oxygen. Anaerobes play a significant role in planetary protection considerations since extraterrestrial environments like Mars probably do not provide enough oxygen for fully aerobic microbial growth. A broad assortment of anaerobic media was used in our cultivation strategies, which focused on microorganisms with special metabolic skills. The majority of the isolated strains grew on anaerobic, complex, nutrient-rich media. Autotrophic microorganisms or microbes capable of fixing nitrogen were also cultivated. A broad range of facultatively anaerobic bacteria was detected during this study and also, for the first time, some strictly anaerobic bacteria (Clostridium and Propionibacterium) were isolated from spacecraft-associated clean rooms. The multiassay cultivation approach was the basis for the detection of several bacteria that had not been cultivated from these special environments before and also led to the discovery of two novel microbial species of Pseudomonas and Paenibacillus.
Trends in Microbiology | 1996
Reinhard Wirth; Albrecht Muscholl; Gerhard Wanner
An increasing number of bacterial species are found to communicate via excreted pheromones. These signals trigger various responses, including luminescence, production of virulence factors, development of fruiting bodies, competence and sporulation, secondary metabolism and plasmid transfer.
Archives of Microbiology | 2008
Benjamin Junglas; Ariane Briegel; Tillmann Burghardt; Paul Walther; Reinhard Wirth; Harald Huber; Reinhard Rachel
Ultrastructure and intercellular interaction of Ignicoccus hospitalis and Nanoarchaeum equitans were investigated using two different electron microscopy approaches, by three-dimensional reconstructions from serial sections, and by electron cryotomography. Serial sections were assembled into 3D reconstructions, for visualizing the unusual complexity of I. hospitalis, its huge periplasmic space, the vesiculating cytoplasmic membrane, and the outer membrane. The cytoplasm contains fibres which are reminiscent to a cytoskeleton. Cell division in I. hospitalis is complex, and different to that in Euryarchaeota or Bacteria. An irregular invagination of the cytoplasmic membrane is followed by separation of the two cytoplasms. Simultaneous constriction of cytoplasmic plus outer membrane is not observed. Cells of N. equitans show a classical mode of cell division, by constriction in the mid-plane. Their cytoplasm exhibits two types of fibres, elongated and ring-shaped. Electron micrographs of contact sites between I. hospitalis and N. equitans exhibit two modes of interaction. One is indirect and mediated by thin fibres; in other cells the two cell surfaces are in direct contact. The two membranes of I. hospitalis cells are frequently seen in direct contact, possibly a prerequisite for transporting metabolites or substrates from the cytoplasm of one cell to the other. Rarely, a transport based on cargo vesicles is observed between I. hospitalis and N. equitans.
Archives of Microbiology | 2008
Simone Schopf; Gerhard Wanner; Reinhard Rachel; Reinhard Wirth
Recently it was shown that Pyrococcus furiosus uses its flagella not only for swimming, but also for establishment of cell–cell connections, and for adhesion to abiotic surfaces. Therefore, it was asked here if P. furiosus might be able to adhere also to biotic surfaces. Since Methanopyrus kandleri can be found in habitats similar to those of P. furiosus (seawater close to the boiling point and anaerobic conditions) it was tested if interactions between both archaea occur. Using a standard medium and a gas phase reduced in H2 (compared with the optimal gas phase for M. kandleri) we were able to grow both species in a stable coculture. Very interestingly, M. kandleri could adhere to glass under such conditions, but not P. furiosus. This latter archaeum, however, was able to adhere onto M. kandleri cells and onto itself, resulting in structured biofilms on glass. These very often appeared as a bottom layer of M. kandleri cells covered by a multitude of P. furiosus cells. Interactions between P. furiosus and M. kandleri were mediated not only by flagella, but also by direct cell–cell contact.
Environmental Microbiology | 2008
Christine Thoma; Monika Frank; Reinhard Rachel; Silvia Schmid; Daniela J. Näther; Gerhard Wanner; Reinhard Wirth
The ability to adhere onto surfaces is of very high importance for microorganisms, enabling them to stay in a favourable habitat for life. In the case of Bacteria cell surface organelles called fimbriae/pili have been shown to be used for adhesion; corresponding cell surface appendages of Archaea have not yet been defined. The first detailed characterization of archaeal fimbriae, namely those of Methanothermobacter thermoautotrophicus, allowed us to identify mth60 as the main structural fimbrin gene. Recombinant expression of mth60 in Escherichia coli was used to generate sufficient amounts of Mth60 to induce antibodies in rabbits. The antiserum reacted specifically with the 16 kDa fimbrial glycoprotein and could specifically detach adhering M. thermoautotrophicus cells from various surfaces. In addition we proved that cells adhering to solid surfaces - organic and inorganic ones - express many more fimbriae than cells growing in liquid cultures. The Mth60 fimbriae therefore are used by M. thermoautotrophicus as adhesins.
International Journal of Systematic and Evolutionary Microbiology | 2011
Annett Bellack; Harald Huber; Reinhard Rachel; Gerhard Wanner; Reinhard Wirth
A novel chemolithoautotrophic, hyperthermophilic methanogen was isolated from a submarine hydrothermal system at the Kolbeinsey Ridge, north of Iceland. Based on its 16S rRNA gene sequence, the strain belongs to the order Methanococcales within the genus Methanocaldococcus, with approximately 95 % sequence similarity to Methanocaldococcus jannaschii as its closest relative. Cells of the novel organism stained Gram-negative and appeared as regular to irregular cocci possessing more than 50 polar flagella. These cell appendages mediated not only motility but also adherence to abiotic surfaces and the formation of cell-cell contacts. The new isolate grew at 55-90 °C, with optimum growth at 80 °C. The optimum NaCl concentration for growth was 2.5 % (w/v), and the optimal pH was 6.5. The cells gained their energy exclusively by reduction of CO(2) with H(2). Selenate, tungstate and yeast extract stimulated growth significantly. The genome size was determined to be in the range 1.8-2.0 kb, and the G+C content of the genomic DNA was 30 mol%. Despite being physiologically nearly identical to the other members of the genus Methanocaldococcus, analysis of whole-cell proteins revealed significant differences. Based on the results from phylogenetic, morphological and protein analyses, we conclude that the novel strain represents a novel species of the genus Methanocaldococcus, for which the name Methanocaldococcus villosus sp. nov. is proposed (type strain KIN24-T80(T) = DSM 22612(T) = JCM 16315(T)).
Applied and Environmental Microbiology | 2010
Alexander J. Probst; Rainer Facius; Reinhard Wirth; Christine Moissl-Eichinger
ABSTRACT In order to meet planetary-protection requirements, culturable bacterial spore loads are measured representatively for the total microbial contamination of spacecraft. However, the National Aeronautics and Space Administrations (NASAs) cotton swab protocols for spore load determination have not changed for decades. To determine whether a more efficient alternative was available, a novel swab was evaluated for recovery of different Bacillus atrophaeus spore concentrations on stainless steel and other surfaces. Two protocols for the nylon-flocked swab (NFS) were validated and compared to the present NASA standard protocol. The results indicate that the novel swab protocols recover 3- to 4-fold more (45.4% and 49.0% recovery efficiency) B. atrophaeus spores than the NASA standard method (13.2%). Moreover, the nylon-flocked-swab protocols were superior in recovery efficiency for spores of seven different Bacillus species, including Bacillus anthracis Sterne (recovery efficiency, 20%). The recovery efficiencies for B. atrophaeus spores from different surfaces showed a variation from 5.9 to 62.0%, depending on the roughness of the surface analyzed. Direct inoculation of the swab resulted in a recovery rate of about 80%, consistent with the results of scanning electron micrographs that allowed detailed comparisons of the two swab types. The results of this investigation will significantly contribute to the cleanliness control of future life detection missions and will provide significant improvement in detection of B. anthracis contamination for law enforcement and security efforts.
Applied and Environmental Microbiology | 2012
Bastian Herzog; Reinhard Wirth
ABSTRACT The swimming behavior of Bacteria has been studied extensively, at least for some species like Escherichia coli. In contrast, almost no data have been published for Archaea on this topic. In a systematic study we asked how the archaeal model organisms Halobacterium salinarum, Methanococcus voltae, Methanococcus maripaludis, Methanocaldococcus jannaschii, Methanocaldococcus villosus, Pyrococcus furiosus, and Sulfolobus acidocaldarius swim and which swimming behavior they exhibit. The two Euryarchaeota M. jannaschii and M. villosus were found to be, by far, the fastest organisms reported up to now, if speed is measured in bodies per second (bps). Their swimming speeds, at close to 400 and 500 bps, are much higher than the speed of the bacterium E. coli or of a very fast animal, like the cheetah, each with a speed of ca. 20 bps. In addition, we observed that two different swimming modes are used by some Archaea. They either swim very rapidly, in a more or less straight line, or they exhibit a slower kind of zigzag swimming behavior if cells are in close proximity to the surface of the glass capillary used for observation. We argue that such a “relocate-and-seek” behavior enables the organisms to stay in their natural habitat.