Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reint K. Jellema is active.

Publication


Featured researches published by Reint K. Jellema.


PLOS ONE | 2012

New Surfactant with SP-B and C Analogs Gives Survival Benefit after Inactivation in Preterm Lambs

Matthias Seehase; Jennifer J. P. Collins; Elke Kuypers; Reint K. Jellema; Daan R. M. G. Ophelders; Olga L. Ospina; Jesús Pérez-Gil; Federico Bianco; Raffaella Garzia; Roberta Razzetti; Boris W. Kramer

Background Respiratory distress syndrome in preterm babies is caused by a pulmonary surfactant deficiency, but also by its inactivation due to various conditions, including plasma protein leakage. Surfactant replacement therapy is well established, but clinical observations and in vitro experiments suggested that its efficacy may be impaired by inactivation. A new synthetic surfactant (CHF 5633), containing synthetic surfactant protein B and C analogs, has shown comparable effects on oxygenation in ventilated preterm rabbits versus Poractant alfa, but superior resistance against inactivation in vitro. We hypothesized that CHF 5633 is also resistant to inactivation by serum albumin in vivo. Methodology/Principal Findings Nineteen preterm lambs of 127 days gestational age (term = 150 days) received CHF 5633 or Poractant alfa and were ventilated for 48 hours. Ninety minutes after birth, the animals received albumin with CHF 5633 or Poractant alfa. Animals received additional surfactant if PaO2 dropped below 100 mmHg. A pressure volume curve was done post mortem and markers of pulmonary inflammation, surfactant content and biophysiology, and lung histology were assessed. CHF 5633 treatment resulted in improved arterial pH, oxygenation and ventilation efficiency index. The survival rate was significantly higher after CHF 5633 treatment (5/7) than after Poractant alfa (1/8) after 48 hours of ventilation. Biophysical examination of the surfactant recovered from bronchoalveolar lavages revealed that films formed by CHF 5633-treated animals reached low surface tensions in a wider range of compression rates than films from Poractant alfa-treated animals. Conclusions For the first time a synthetic surfactant containing both surfactant protein B and C analogs showed significant benefit over animal derived surfactant in an in vivo model of surfactant inactivation in premature lambs.


PLOS ONE | 2013

Mesenchymal stem cells induce T-cell tolerance and protect the preterm brain after global hypoxia-ischemia.

Reint K. Jellema; Tim G. A. M. Wolfs; Valéria Lima Passos; Alex Zwanenburg; Daan R. M. G. Ophelders; Elke Kuypers; Anton H. N. Hopman; Jeroen Dudink; Harry W.M. Steinbusch; Peter Andriessen; Wilfred T. V. Germeraad; Joris Vanderlocht; Boris W. Kramer

Hypoxic-ischemic encephalopathy (HIE) in preterm infants is a severe disease for which no curative treatment is available. Cerebral inflammation and invasion of activated peripheral immune cells have been shown to play a pivotal role in the etiology of white matter injury, which is the clinical hallmark of HIE in preterm infants. The objective of this study was to assess the neuroprotective and anti-inflammatory effects of intravenously delivered mesenchymal stem cells (MSC) in an ovine model of HIE. In this translational animal model, global hypoxia-ischemia (HI) was induced in instrumented preterm sheep by transient umbilical cord occlusion, which closely mimics the clinical insult. Intravenous administration of 2 x 106 MSC/kg reduced microglial proliferation, diminished loss of oligodendrocytes and reduced demyelination, as determined by histology and Diffusion Tensor Imaging (DTI), in the preterm brain after global HI. These anti-inflammatory and neuroprotective effects of MSC were paralleled by reduced electrographic seizure activity in the ischemic preterm brain. Furthermore, we showed that MSC induced persistent peripheral T-cell tolerance in vivo and reduced invasion of T-cells into the preterm brain following global HI. These findings show in a preclinical animal model that intravenously administered MSC reduced cerebral inflammation, protected against white matter injury and established functional improvement in the preterm brain following global HI. Moreover, we provide evidence that induction of T-cell tolerance by MSC might play an important role in the neuroprotective effects of MSC in HIE. This is the first study to describe a marked neuroprotective effect of MSC in a translational animal model of HIE.


Journal of Neuroinflammation | 2013

Cerebral inflammation and mobilization of the peripheral immune system following global hypoxia-ischemia in preterm sheep

Reint K. Jellema; Valéria Lima Passos; Alex Zwanenburg; Daan R. M. G. Ophelders; Stephanie De Munter; Joris Vanderlocht; Wilfred T. V. Germeraad; Elke Kuypers; Jennifer J. P. Collins; Jack P.M. Cleutjens; Ward Jennekens; Antonio W. D. Gavilanes; Matthias Seehase; Hans J. S. Vles; Harry W.M. Steinbusch; Peter Andriessen; Tim G. A. M. Wolfs; Boris W. Kramer

BackgroundHypoxic-ischemic encephalopathy (HIE) is one of the most important causes of brain injury in preterm infants. Preterm HIE is predominantly caused by global hypoxia-ischemia (HI). In contrast, focal ischemia is most common in the adult brain and known to result in cerebral inflammation and activation of the peripheral immune system. These inflammatory responses are considered to play an important role in the adverse outcomes following brain ischemia. In this study, we hypothesize that cerebral and peripheral immune activation is also involved in preterm brain injury after global HI.MethodsPreterm instrumented fetal sheep were exposed to 25 minutes of umbilical cord occlusion (UCO) (n = 8) at 0.7 gestation. Sham-treated animals (n = 8) were used as a control group. Brain sections were stained for ionized calcium binding adaptor molecule 1 (IBA-1) to investigate microglial proliferation and activation. The peripheral immune system was studied by assessment of circulating white blood cell counts, cellular changes of the spleen and influx of peripheral immune cells (MPO-positive neutrophils) into the brain. Pre-oligodendrocytes (preOLs) and myelin basic protein (MBP) were detected to determine white matter injury. Electro-encephalography (EEG) was recorded to assess functional impairment by interburst interval (IBI) length analysis.ResultsGlobal HI resulted in profound activation and proliferation of microglia in the hippocampus, periventricular and subcortical white matter. In addition, non-preferential mobilization of white blood cells into the circulation was observed within 1 day after global HI and a significant influx of neutrophils into the brain was detected 7 days after the global HI insult. Furthermore, global HI resulted in marked involution of the spleen, which could not be explained by increased splenic apoptosis. In concordance with cerebral inflammation, global HI induced severe brain atrophy, region-specific preOL vulnerability, hypomyelination and persistent suppressed brain function.ConclusionsOur data provided evidence that global HI in preterm ovine fetuses resulted in profound cerebral inflammation and mobilization of the peripheral innate immune system. These inflammatory responses were paralleled by marked injury and functional loss of the preterm brain. Further understanding of the interplay between preterm brain inflammation and activation of the peripheral immune system following global HI will contribute to the development of future therapeutic interventions in preterm HIE.


Stem Cells Translational Medicine | 2016

Mesenchymal Stromal Cell-Derived Extracellular Vesicles Protect the Fetal Brain After Hypoxia-Ischemia

Daan R. M. G. Ophelders; Tim G. A. M. Wolfs; Reint K. Jellema; Alex Zwanenburg; Peter Andriessen; Tammo Delhaas; Anna-Kristin Ludwig; Stefan Radtke; Vera Peters; Leon Janssen; Bernd Giebel; Boris W. Kramer

Preterm neonates are susceptible to perinatal hypoxic‐ischemic brain injury, for which no treatment is available. In a preclinical animal model of hypoxic‐ischemic brain injury in ovine fetuses, we have demonstrated the neuroprotective potential of systemically administered mesenchymal stromal cells (MSCs). The mechanism of MSC treatment is unclear but suggested to be paracrine, through secretion of extracellular vesicles (EVs). Therefore, we investigated in this study the protective effects of mesenchymal stromal cell‐derived extracellular vesicles (MSC‐EVs) in a preclinical model of preterm hypoxic‐ischemic brain injury. Ovine fetuses were subjected to global hypoxia‐ischemia by transient umbilical cord occlusion, followed by in utero intravenous administration of MSC‐EVs. The therapeutic effects of MSC‐EV administration were assessed by analysis of electrophysiological parameters and histology of the brain. Systemic administration of MSC‐EVs improved brain function by reducing the total number and duration of seizures, and by preserving baroreceptor reflex sensitivity. These functional protections were accompanied by a tendency to prevent hypomyelination. Cerebral inflammation remained unaffected by the MSC‐EV treatment. Our data demonstrate that MSC‐EV treatment might provide a novel strategy to reduce the neurological sequelae following hypoxic‐ischemic injury of the preterm brain. Our study results suggest that a cell‐free preparation comprising neuroprotective MSC‐EVs could substitute MSCs in the treatment of preterm neonates with hypoxic‐ischemic brain injury, thereby circumventing the potential risks of systemic administration of living cells.


Journal of Maternal-fetal & Neonatal Medicine | 2012

Inflammation-induced immune suppression of the fetus: a potential link between chorioamnionitis and postnatal early onset sepsis

Tim G. A. M. Wolfs; Reint K. Jellema; Giovanni Turrisi; Elisa Becucci; Giuseppe Buonocore; Boris W. Kramer

Chorioamnionitis which results from microbial invasion of the amniotic cavity is the most frequent cause of preterm birth. Chorioamnionitis is associated with an increased risk of early-onset sepsis but the mechanisms underlying this association remain largely unknown. We hypothesize that developmental alterations of fetal organs and the immune system in the course of chorioamnionitis determine the risk of development of early onset sepsis. The purpose of this review is therefore to summarize the consequences of chorioamnionitis on fetal development and speculate how those antenatal changes might predispose to early onset sepsis.


Early Human Development | 2012

White matter injury following fetal inflammatory response syndrome induced by chorioamnionitis and fetal sepsis: Lessons from experimental ovine models☆

Elke Kuypers; Daan R. M. G. Ophelders; Reint K. Jellema; Steffen Kunzmann; Antonio W. D. Gavilanes; Boris W. Kramer

Chorioamnionitis and fetal sepsis can induce a fetal inflammatory response syndrome (FIRS) which is closely related to the development of white matter injury in the fetal brain. Large epidemiological studies support the link between FIRS and fetal brain injury with a clear association between the presence of in utero inflammation and neurodevelopmental complications such as cerebral palsy, autism and cognitive impairments later in life. Translational animal models of chorioamnionitis and fetal sepsis are essential in understanding the underlying pathophysiological mechanisms of fetal brain injury after exposure to intra-uterine inflammation. Concerning this aspect, ovine models have high translational value since neurodevelopment in sheep closely resembles the human situation. In this article, we will review clinical and experimental evidence for the link between FIRS and white matter injury in the fetal brain. With respect to experimental findings, we will particularly focus on the lessons learned from ovine models of chorioamnionitis and fetal sepsis. We also highlight two key players implied in the pathophysiology of white matter injury after in utero exposure to inflammation.


PLOS ONE | 2013

Effects of Intra-Amniotic Lipopolysaccharide and Maternal Betamethasone on Brain Inflammation in Fetal Sheep

Elke Kuypers; Reint K. Jellema; Daan R. M. G. Ophelders; Jeroen Dudink; Maria Nikiforou; Tim G. A. M. Wolfs; Ilias Nitsos; J. Jane Pillow; Graeme R. Polglase; Matthew W. Kemp; Masatoshi Saito; John P. Newnham; Alan H. Jobe; Suhas G. Kallapur; Boris W. Kramer

Rationale Chorioamnionitis and antenatal glucocorticoids are common exposures for preterm infants and can affect the fetal brain, contributing to cognitive and motor deficits in preterm infants. The effects of antenatal glucocorticoids on the brain in the setting of chorioamnionitis are unknown. We hypothesized that antenatal glucocorticoids would modulate inflammation in the brain and prevent hippocampal and white matter injury after intra-amniotic lipopolysaccharide (LPS) exposure. Methods Time-mated ewes received saline (control), an intra-amniotic injection of 10 mg LPS at 106d GA or 113d GA, maternal intra-muscular betamethasone (0.5 mg/kg maternal weight) alone at 113d GA, betamethasone at 106d GA before LPS or betamethasone at 113d GA after LPS. Animals were delivered at 120d GA (term=150d). Brain structure volumes were measured on T2-weighted MRI images. The subcortical white matter (SCWM), periventricular white matter (PVWM) and hippocampus were analyzed for microglia, astrocytes, apoptosis, proliferation, myelin and pre-synaptic vesicles. Results LPS and/or betamethasone exposure at different time-points during gestation did not alter brain structure volumes on MRI. Betamethasone alone did not alter any of the measurements. Intra-amniotic LPS at 106d or 113d GA induced inflammation as indicated by increased microglial and astrocyte recruitment which was paralleled by increased apoptosis and hypomyelination in the SCWM and decreased synaptophysin density in the hippocampus. Betamethasone before the LPS exposure at 113d GA prevented microglial activation and the decrease in synaptophysin. Betamethasone after LPS exposure increased microglial infiltration and apoptosis. Conclusion Intra-uterine LPS exposure for 7d or 14d before delivery induced inflammation and injury in the fetal white matter and hippocampus. Antenatal glucocorticoids aggravated the inflammatory changes in the brain caused by pre-existing intra-amniotic inflammation. Antenatal glucocorticoids prior to LPS reduced the effects of intra-uterine inflammation on the brain. The timing of glucocorticoid administration in the setting of chorioamnionitis can alter outcomes for the fetal brain.


Artificial Organs | 2011

NeonatOx: a pumpless extracorporeal lung support for premature neonates.

Jutta Arens; Mark Schoberer; Anne Lohr; Thorsten Orlikowsky; Matthias Seehase; Reint K. Jellema; Jennifer J. P. Collins; Boris W. Kramer; Thomas Schmitz-Rode; Ulrich Steinseifer

Gas exchange in premature neonates is regularly impaired by structural and functional immaturity of the lung. Mechanical ventilation, which is vitally important to sustain oxygenation and CO(2) elimination, causes, at the same time, mechanical and inflammatory destruction of lung tissue. To date, extracorporeal oxygenation is not a treatment option, one reason among others being the size of available oxygenators and cannulas. We hypothesized that a substantial improvement in gas exchange can be achieved by maintenance of the fetal cardiopulmonary bypass and interposition of a suitable passively driven (arteriovenous) membrane oxygenator. In close cooperation between engineers and neonatologists, we developed a miniaturized oxygenator and adapted cannulas to be used as a pumpless extracorporeal lung support that is connected to the circulation via cannulation of the umbilical cord vessels. First in vitro and in vivo studies show promising results. We regard this as one step on the way to clinical application of the artificial placenta.


PLOS ONE | 2012

Ovine Fetal Thymus Response to Lipopolysaccharide-Induced Chorioamnionitis and Antenatal Corticosteroids

Elke Kuypers; Jennifer J. P. Collins; Reint K. Jellema; Tim G. A. M. Wolfs; Matthew W. Kemp; Ilias Nitsos; J. Jane Pillow; Graeme R. Polglase; John P. Newnham; Wilfred T. V. Germeraad; Suhas G. Kallapur; Alan H. Jobe; Boris W. Kramer

Rationale Chorioamnionitis is associated with preterm delivery and involution of the fetal thymus. Women at risk of preterm delivery receive antenatal corticosteroids which accelerate fetal lung maturation and improve neonatal outcome. However, the effects of antenatal corticosteroids on the fetal thymus in the settings of chorioamnionitis are largely unknown. We hypothesized that intra-amniotic exposure to lipopolysaccharide (LPS) causes involution of the fetal thymus resulting in persistent effects on thymic structure and cell populations. We also hypothesized that antenatal corticosteroids may modulate the effects of LPS on thymic development. Methods Time-mated ewes with singleton fetuses received an intra-amniotic injection of LPS 7 or 14 days before preterm delivery at 120 days gestational age (term = 150 days). LPS and corticosteroid treatment groups received intra-amniotic LPS either preceding or following maternal intra-muscular betamethasone. Gestation matched controls received intra-amniotic and maternal intra-muscular saline. The fetal intra-thoracic thymus was evaluated. Results Intra-amniotic LPS decreased the cortico-medullary (C/M) ratio of the thymus and increased Toll-like receptor (TLR) 4 mRNA and CD3 expression indicating involution and activation of the fetal thymus. Increased TLR4 and CD3 expression persisted for 14 days but Foxp3 expression decreased suggesting a change in regulatory T-cells. Sonic hedgehog and bone morphogenetic protein 4 mRNA, which are negative regulators of T-cell development, decreased in response to intra-amniotic LPS. Betamethasone treatment before LPS exposure attenuated some of the LPS-induced thymic responses but increased cleaved caspase-3 expression and decreased the C/M ratio. Betamethasone treatment after LPS exposure did not prevent the LPS-induced thymic changes. Conclusion Intra-amniotic exposure to LPS activated the fetal thymus which was accompanied by structural changes. Treatment with antenatal corticosteroids before LPS partially attenuated the LPS-induced effects but increased apoptosis in the fetal thymus. Corticosteroid administration after the inflammatory stimulus did not inhibit the LPS effects on the fetal thymus.


Reproductive Sciences | 2013

Intraamniotic Lipopolysaccharide Exposure Changes Cell Populations and Structure of the Ovine Fetal Thymus

Elke Kuypers; Tim G. A. M. Wolfs; Jennifer J. P. Collins; Reint K. Jellema; John P. Newnham; Matthew W. Kemp; Suhas G. Kallapur; Alan H. Jobe; Boris W. Kramer

Rationale: Chorioamnionitis induces preterm delivery and acute involution of the fetal thymus which is associated with postnatal inflammatory disorders. We studied the immune response, cell composition, and architecture of the fetal thymus following intraamniotic lipopolysaccharide (LPS) exposure. Methods: Time-mated ewes received an intraamniotic injection of LPS 5, 12, or 24 hours or 2, 4, 8, or 15 days before delivery at 125 days gestational age (term = 150 days). Results: The LPS exposure resulted in decreased blood lymphocytes within 5 hours and decreased thymic corticomedullary ratio within 24 hours. Thymic interleukin 6 (IL6) and IL17 messenger RNA (mRNA) increased 5-fold 24 hours post-LPS exposure. Increased toll-like receptor 4 (TLR4) mRNA and nuclear factor κB positive cells at 24 hours after LPS delivery demonstrated acute thymic activation. Both TLR4 and IL1 mRNA increased by 5-fold and the number of Foxp3-positive cells (Foxp3+ cells) decreased 15 days after exposure. Conclusion: Intraamniotic LPS exposure caused a proinflammatory response, involution, and a persistent depletion of thymic Foxp3+ cells indicating disturbance of the fetal immune homeostasis.

Collaboration


Dive into the Reint K. Jellema's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge