Remco Bredewold
Boston College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Remco Bredewold.
Psychoneuroendocrinology | 2007
Alexa H. Veenema; Remco Bredewold; Inga D. Neumann
Early life stress, in particular child abuse and neglect, is an acknowledged risk factor for the development of pathological anxiety and aggression. In rodents, 3-h daily maternal separation (MS) during the first 2 weeks of life is an established animal model of early life stress and has repeatedly been shown to increase anxiety and stress responsiveness in adulthood. However, preclinical studies on the effects of postnatal stress on adult aggression are limited. The present study investigated whether MS affects intermale aggression and/or maternal aggression in C57BL/6 mice. In both adult male and virgin female mice, MS elevated anxiety-related behavior as tested on the elevated plus-maze, in the open field and during novel object exploration. The latency to attack an unknown male intruder, as assessed with the resident-intruder test, was significantly longer in MS male mice compared with control male mice. In contrast, the latency to attack a novel male intruder was significantly shorter in MS females compared with control females on days 3 and 5 of lactation. These opposite effects of MS can be explained by the fact that intermale and maternal aggression are two different forms of aggression, and hence, might be modulated by different neurobiological pathways. Indeed, in the paraventricular nucleus of the hypothalamus, MS was found to selectively increase vasopressin immunoreactivity in males, whereas MS selectively decreased oxytocin immunoreactivity in lactating females. In conclusion, MS has long-lasting and differential effects on adult intermale and maternal aggression in C57BL/6 mice. Alterations in hypothalamic vasopressin and oxytocin immunoreactivity may, in part, underlie the opposite effects of MS on intermale and maternal aggression. The MS paradigm represents a promising animal model to reveal underlying mechanisms of aggressive behavioral dysfunctions associated with early life stress.
Psychoneuroendocrinology | 2007
Oliver J. Bosch; Werner Müsch; Remco Bredewold; David A. Slattery; Inga D. Neumann
Early life stress is believed to constitute a risk factor for the development of mood disorders later in life. In the present study, we hypothesized that prenatal stress (PS) exerts long-lasting effects in female rat offspring, resulting in impaired adaptations to stress during lactation and, as such, may be a contributory factor to postpartum mood disorders. PS increased anxiety in adult virgin females compared with controls. During lactation, PS dams nursed significantly less and spent less time with pups compared with controls, whereas dams did not differ in pup retrieval or maternal aggression. HPA axis reactivity was elevated in response to a mild stressor in PS dams compared to their controls, but not in virgins, with the delta corticosterone response returning to the higher level seen in virgins. Moreover, corticotropin-releasing hormone (CRH) mRNA expression within the parvocellular region of the paraventricular nucleus (PVN) was increased in both virgins and dams exposed to PS compared with the relative controls, while the attenuation in expression in lactating controls was abolished following PS. In addition, arginine vasopressin (AVP) mRNA was increased in the parvocellular, but not magnocellular part of the PVN, in both PS-exposed virgins and lactating dams compared with their relative controls; although expression was also higher in controls during lactation compared with virgins. Thus, the present study demonstrates that exposure to PS results in long-lasting behavioural and neuroendocrine alterations in the female offspring, which are manifested during the lactation period. Furthermore, it implicates PS as a potential risk factor for the development of postpartum mood disorders, and that alterations in the HPA axis reactivity, at least partially, are involved.
Neuropharmacology | 2010
Michael Lukas; Remco Bredewold; Inga D. Neumann; Alexa H. Veenema
Brain vasopressin V(1A) receptors (V(1A)-R) and oxytocin receptors (OT-R) are important modulators of social behaviors. We recently showed that exposure to maternal separation (MS; 3 h daily, postnatal days 1-14) induces changes in social behaviors in juvenile and adult male rats. Here, we hypothesize that MS induces brain region-specific changes in V(1A)-R and OT-R across development, which in turn, may underlie MS-induced changes in social behaviors. We examined the effects of MS on V(1A)-R and OT-R binding in forebrain regions of juvenile (5 weeks), adolescent (8 weeks), and adult (16 weeks) male rats. Robust age-related changes were found for V(1A)-R and OT-R binding in several brain regions. For example, in the lateral septum V(1A)-R binding increased while OT-R binding decreased with age. Most notably, OT-R binding in the caudate putamen showed a 2-fold decrease while OT-R binding in the ventromedial hypothalamus showed a 4-fold increase with age. Importantly, exposure to MS interfered with these developmental changes in several brain regions. Specifically, MS significantly increased V(1A)-R binding in the piriform cortex (at adolescent and adult ages), the lateral septum (at juvenile age), the hypothalamic attack area (at adolescent age), and the dentate gyrus of the hippocampus (at adolescent age), and decreased V(1A)-R binding in the arcuate nucleus (at juvenile age). Moreover, OT-R binding was significantly lower in the agranular cortex (at juvenile and adolescent age), the lateral septum (at adult age) and the caudate putamen (at adult age), but higher in the medial preoptic area (at adolescent age) and ventromedial hypothalamus (at adult age) after exposure to MS. In conclusion, age-dependent changes in V(1A)-R and OT-R binding are likely associated with the maturation of behaviors, such as sexual and aggressive behaviors, while disruption of these changes by MS might contribute to previously observed changes in social behaviors after MS.
European Journal of Neuroscience | 2007
Nina Donner; Remco Bredewold; Rodrigue Maloumby; Inga D. Neumann
Prolactin (PRL) has been shown to promote maternal behaviour, and to regulate neuroendocrine and emotional stress responses. These effects appear more important in the peripartum period, when the brain PRL system is highly activated. Here, we studied the mechanisms that underlie the anti‐stress effects of PRL. Ovariectomized, estradiol‐substituted Wistar rats were implanted with an intracerebroventricular cannula and treated with ovine PRL (0.01, 0.1 or 1u2003µg/h; 5u2003days via osmotic minipumps) or vehicle, and their responses to acute restraint stress was assessed. Chronic PRL treatment exerted an anxiolytic effect on the elevated plus‐maze, and attenuated the acute restraint‐induced rise in plasma adrenocorticotropin, corticosterone and noradrenaline. At the neuronal level, in situ hybridization revealed PRL effects on the expression patterns of the immediate‐early gene c‐fos and corticotropin‐releasing factor (CRF). Under basal conditions, PRL significantly reduced c‐fos mRNA expression within the central amygdala. In response to restraint, the expression of both c‐fos mRNA and protein and of CRF mRNA was decreased in the parvocellular part of the paraventricular nucleus (PVN) of PRL‐treated compared with vehicle‐treated animals. In conclusion, our data demonstrate that chronic elevation of PRL levels within the brain results in reduced neuronal activation within the hypothalamus, specifically within the PVN, in response to an acute stressor. Thus, PRL acting at various relevant brain regions exerts profound anxiolytic and anti‐stress effects, and is likely to contribute to the attenuated stress responsiveness found in the peripartum period, when brain PRL levels are physiologically upregulated.
Hormones and Behavior | 2013
Kelly M. Dumais; Remco Bredewold; Thomas E. Mayer; Alexa H. Veenema
Social interest reflects the motivation to approach a conspecific for the assessment of social cues and is measured in rats by the amount of time spent investigating conspecifics. Virgin female rats show lower social interest towards unfamiliar juvenile conspecifics than virgin male rats. We hypothesized that the neuropeptide oxytocin (OT) may modulate sex differences in social interest because of the involvement of OT in pro-social behaviors. We determined whether there are sex differences in OT system parameters in the brain and whether these parameters would correlate with social interest. We also determined whether estrus phase or maternal experience would alter low social interest and whether this would correlate with changes in OT system parameters. Our results show that regardless of estrus phase, females have significantly lower OT receptor (OTR) binding densities than males in the majority of forebrain regions analyzed, including the nucleus accumbens, caudate putamen, lateral septum, bed nucleus of the stria terminalis, medial amygdala, and ventromedial hypothalamus. Interestingly, male social interest correlated positively with OTR binding densities in the medial amygdala, while female social interest correlated negatively with OTR binding densities in the central amygdala. Proestrus/estrus females showed similar social interest to non-estrus females despite increased OTR binding densities in several forebrain areas. Maternal experience had no immediate or long-lasting effects on social interest or OT brain parameters except for higher OTR binding in the medial amygdala in primiparous females. Together, these findings demonstrate that there are robust sex differences in OTR binding densities in multiple forebrain regions of rats and that OTR binding densities correlate with social interest in brain region- and sex-specific ways.
Psychoneuroendocrinology | 2011
Michael Lukas; Remco Bredewold; Rainer Landgraf; Inga D. Neumann; Alexa H. Veenema
Early life stress poses a risk for the development of psychopathologies characterized by disturbed emotional, social, and cognitive performance. We used maternal separation (MS, 3h daily, postnatal days 1-14) to test whether early life stress impairs social recognition performance in juvenile (5-week-old) and adult (16-week-old) male Wistar rats. Social recognition was tested in the social discrimination test and defined by increased investigation by the experimental rat towards a novel rat compared with a previously encountered rat. Juvenile control and MS rats demonstrated successful social recognition at inter-exposure intervals of 30 and 60 min. However, unlike adult control rats, adult MS rats failed to discriminate between a previously encountered and a novel rat after 60 min. The social recognition impairment of adult MS rats was accompanied by a lack of a rise in arginine vasopressin (AVP) release within the lateral septum seen during social memory acquisition in adult control rats. This blunted response of septal AVP release was social stimulus-specific because forced swimming induced a rise in septal AVP release in both control and MS rats. Retrodialysis of AVP (1 μg/ml, 3.3 μl/min, 30 min) into the lateral septum during social memory acquisition restored social recognition in adult MS rats at the 60-min interval. These studies demonstrate that MS impairs social recognition performance in adult rats, which is likely caused by blunted septal AVP activation. Impaired social recognition may be linked to MS-induced changes in other social behaviors like aggression as shown previously.
Frontiers in Behavioral Neuroscience | 2014
Remco Bredewold; Caroline J.W. Smith; Kelly M. Dumais; Alexandra Veenema
We recently demonstrated that vasopressin (AVP) in the lateral septum modulates social play behavior differently in male and female juvenile rats. However, the extent to which different social contexts (i.e., exposure to an unfamiliar play partner in different environments) affect the regulation of social play remains largely unknown. Given that AVP and the closely related neuropeptide oxytocin (OXT) modulate social behavior as well as anxiety-like behavior, we hypothesized that these neuropeptides may regulate social play behavior differently in novel (novel cage) as opposed to familiar (home cage) social environments. Administration of the specific AVP V1a receptor (V1aR) antagonist (CH2)5Tyr(Me2)AVP into the lateral septum enhanced home cage social play behavior in males but reduced it in females, confirming our previous findings. These effects were context-specific because V1aR blockade did not alter novel cage social play behavior in either sex. Furthermore, social play in females was reduced by AVP in the novel cage and by OXT in the home cage. Additionally, females administered the specific OXT receptor antagonist desGly-NH2,d(CH2)5−[Tyr(Me)2,Thr4]OVT showed less social play in the novel as compared to the home cage. AVP enhanced anxiety-related behavior in males (tested on the elevated plus-maze), but failed to do so in females, suggesting that exogenous AVP alters social play and anxiety-related behavior via distinct and sex-specific mechanisms. Moreover, none of the other drug treatments that altered social play had an effect on anxiety, suggesting that these drug-induced behavioral alterations are relatively specific to social behavior. Overall, we showed that AVP and OXT systems in the lateral septum modulate social play in juvenile rats in neuropeptide-, sex- and social context-specific ways. These findings underscore the importance of considering not only sex, but also social context, in how AVP and OXT modulate social behavior.
Psychoneuroendocrinology | 2013
Alexa H. Veenema; Remco Bredewold; Geert J. De Vries
Social play activities among juveniles are thought to contribute to the development of social and emotional skills in humans and animals. Conversely, social play deficits are observed in developmental neuropsychiatric disorders. Importantly, many of these disorders show sex differences in incidence, course of the disease, and severity of symptoms. We hypothesized that sex differences in the neural systems controlling social behavior can contribute to these differences. We therefore studied the involvement of the sexually dimorphic vasopressin and oxytocin systems, which have been implicated in these disorders, in juvenile social play behavior. Single-housed 5-week-old juvenile male and female rats were exposed in their home cage to an age-and sex-matched novel conspecific for 10 min, and social play behaviors were recorded. We found no consistent sex differences in duration or elements of social play in vehicle-treated rats. However, intracerebroventricular injection of the specific vasopressin 1a receptor (V1aR) antagonist (CH2)5Tyr(Me(2))AVP significantly reduced social play behaviors in males while increasing them in females. Intracerebroventricular injection of the specific oxytocin receptor antagonist des-Gly-NH2,d(CH2)5[Tyr(Me)(2),Thr(4)]OVT did not alter social play in either sex. To locate the effects of V1aR blockade on social play, we targeted the lateral septum, a sexually dimorphic brain region showing denser vasopressin fibers in males than in females and an abundant expression of V1aR in both sexes. Surprisingly, blockade of V1aR in the lateral septum increased social play behaviors in males, but decreased them in females. These findings suggest sex- and brain region-specific roles for vasopressin in the regulation of social play behavior in juvenile rats.
Psychoneuroendocrinology | 2012
Daniela I. Beiderbeck; Stefan O. Reber; Andrea Havasi; Remco Bredewold; Alexa H. Veenema; Inga D. Neumann
A better neurobiological understanding of high and abnormal aggression based on adequate animal models is essential for novel therapy and prevention. Selective breeding of rats for extremes in anxiety-related behavior resulted in two behavioral phenotypes with high and abnormal forms of aggression. Rats bred for low anxiety-related behavior (LAB) consistently show highest levels of aggression and little social investigation in the resident-intruder (RI) test, compared with non-selected low-aggressive (NAB) rats. High anxiety-related (HAB) rats also show higher levels of aggression than NAB rats, but to a lesser extent than LAB rats. Accordingly, extremes in inborn anxiety in both directions are linked to an increased aggression level. Further, both LAB and HAB, but not NAB males, display abnormal aggression (attacks towards vulnerable body parts, females or narcotized males), which is particularly prominent in LABs. Also, only in LAB rats, the nucleus accumbens (NAc) was found to be strongly activated in response to the RI test as reflected by increased c-fos and zif268 mRNA expression, and higher local dopamine release compared with NAB males, without differences in local dopamine receptor binding. Consequently, local pharmacological manipulation by infusion of an anesthetic (lidocaine, 20 μg/μl) or a dopamine D2 (haloperidol, 10 ng/μl), but not D1 (SCH-23390 10 ng/μl), receptor antagonist significantly reduced high aggression in LAB rats. Thus, LAB rats are an adequate model to study high and abnormal aggression. In LAB males, this is likely to be linked to hyper-activation of the reward system, as found in psychopathic patients. Specifically, activation of the accumbal dopamine system is likely to underlie the high aggression observed in LAB rats.
Hormones and Behavior | 2012
Alexa H. Veenema; Remco Bredewold; G.J. de Vries
In adult male rats, vasopressin (AVP) facilitates social recognition via activation of V1a receptors within the lateral septum. Much less is known about how AVP affects social recognition in adult females or in juvenile animals of either sex. We found that administration of the specific V1a receptor antagonist d(CH(2))(5)[Tyr(Me)(2)]AVP into the lateral septum of adult rats impaired, whereas AVP extended, social discrimination in both sexes. In juveniles, however, we detected a sex difference, such that males but not females showed social discrimination. Interestingly, administration of the V1a receptor antagonist to juveniles (either intracerebroventricularly or locally in the lateral septum) did not prevent social discrimination, but instead significantly decreased the investigation of a novel as opposed to a familiar animal in both sexes, with stronger effects in males. V1a receptors were found to be abundantly expressed in the lateral septum with higher binding density in females than in males. These findings demonstrate that activation of V1a receptors in the lateral septum is important for social recognition in both sexes, and that the roles of septal V1a receptors in social recognition change during development.