Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Remedios Cortese is active.

Publication


Featured researches published by Remedios Cortese.


Physical Chemistry Chemical Physics | 2011

A DFT study of IRMOF-3 catalysed Knoevenagel condensation

Remedios Cortese; Dario Duca

It has been recently reported that IRMOF-3 [Gascon et al., J. Catal, 2009, 261, 75] may behave as a basic catalyst, active in the Knoevenagel condensation. In particular, it has been shown that the basicity of aniline-like amino moieties is enhanced, along with the catalytic activity, when incorporated into MOF structures. The computational study here was aimed at finding possible atomistic explanations of the increased basicity and catalytic activity of the IRMOF-3 embedded aniline groups, experimentally claimed. It was, moreover, aimed at guessing a reaction mechanism for the IRMOF-3 catalysed Knoevenagel condensation of benzaldehyde and ethyl-cyanoacetate. Within the DFT framework we have studied structure and basicity properties of IRMOF-3 and we have analysed the energetics of the catalytic cycle as well as of possible deactivation paths, including it. The increased basicity of IRMOF-3 over other amminic catalysts has been explained via the formation of protonated conjugate derivatives, involving hydrogen-bonds and originating quasi-planar 6-term rings. Several plausible reaction steps have been moreover taken into account and a mechanism for the Knoevenagel condensation, including catalyst deactivation, has been proposed for aniline molecules and embedded aniline moieties. This allowed us to suggest that the increased IRMOF-3 activity, as a basic catalyst, should be mostly related to its water adsorption ability, preserving the properties of the catalytically active amino moieties.


Reaction Kinetics, Mechanisms and Catalysis | 2013

Propan-2-ol dehydration on H-ZSM-5 and H-Y zeolite: a DFT study

Antonio Prestianni; Remedios Cortese; Dario Duca

The catalytic dehydration of propan-2-ol over H-Y and H-ZMS-5 aluminated zeolite models, mimicking both internal cavities and external surfaces, was studied by DFT calculations to investigate the reaction mechanism. After the adsorption of propan-2-ol on the zeolite, the dehydration mechanism starts with alcohol protonation, occurring by one acidic –OH group of the zeolite fragment, followed by a concerted β-elimination to give propene. The catalytic activity is affected by the size of the zeolite cavity, which is larger in the H-Y than in the H-ZMS-5 zeolite. The adsorption energy of the reagent, as an example, decreases in the order: H-Y cavity ≃ H-ZMS-5 surface > H-ZMS-5 cavity, pointing that the adsorption process should preferentially occur either on open surface or inside larger cavity. More interestingly, confinement effects play a twofold role in driving the reaction pathway, resulting in two different effects on the reaction outcomes. The thermodynamic stability, evaluated by the standard free energy difference of the products (water and propene) with respect to the reactant (propan-2-ol), would indeed suggest that the reaction more smoothly could occur for the systems: H-ZMS-5 surface > non-catalyzed > H-Y cavity > H-ZMS-5 cavity. The activation standard free energy of the process conversely decreases in the order: non-catalyzed > H-ZMS-5 surface > H-ZMS-5 cavity > H-Y cavity, suggesting that the reaction is faster inside zeolite cavities. Experimental and computational results are in agreement, giving confidence on the atomistic-level insights provided.


Chemcatchem | 2017

Boron Nitride-supported Sub-nanometer Pd6 Clusters for Formic Acid Decomposition: A DFT Study

Roberto Schimmenti; Remedios Cortese; Dario Duca; Manos Mavrikakis

A periodic, self‐consistent planewave DFT study was carried out to explore the potential use of Pd6 clusters supported on a boron nitride sheet as a catalyst for the selective decomposition of formic acid (HCOOH) to CO2 and H2. The competition between formate (HCOO) and carboxyl (COOH) paths on catalytic sites, with different proximities to the support, was studied. Based on energetics alone, the reaction may mainly follow the HCOO route. Slightly lower activation energies were found at the lateral sites of the cluster as compared to top face sites. This is particularly true for the bidentate to monodentate HCOO conversion. Through comparison of results with similar studies on HCOOH decomposition on extended Pd surfaces, it was demonstrated that the existence of undercoordinated sites in the sub‐nanometer cluster could play a key role in preferentially stabilizing HCOO over COOH, which is a common CO precursor in this reaction. A hydrogen spillover mechanism was also investigated; migration toward the boron nitride support is not favorable, at least in the early stages of the reaction. However, hydrogen diffusion on the cluster has low barriers compared to those involved in formic acid decomposition.


Chemistry: A European Journal | 2015

N-doped carbon networks: alternative materials tracing new routes for activating molecular hydrogen.

Remedios Cortese; Francesco Ferrante; Stefan Roggan; Dario Duca

The fragmentation of molecular hydrogen on N-doped carbon networks was investigated by using molecular (polyaromatic macrocycles) as well as truncated and periodic (carbon nanotubes) models. The computational study was focused on the ergonicity analysis of the reaction and on the properties of the transition states involved when constellations of three or four pyridinic nitrogen atom defects are present in the carbon network. Calculations show that whenever N-defects are embedded in species characterized by large conjugated π-systems, either in polyaromatic macrocycles or carbon nanotubes, the corresponding H2 bond cleavage is largely exergonic. The fragmentation Gibbs free energy is affected by the final arrangement of the hydrogen atoms on the defect and by the extension of the π-electron cloud, but it is not influenced by the curvature of the system.


Topics in Catalysis | 2016

α-d-Glucopyranose Adsorption on a Pd30 Cluster Supported on Boron Nitride Nanotube

Antonio Prestianni; Remedios Cortese; Francesco Ferrante; Roberto Schimmenti; Dario Duca; Sophie Hermans; Dimitri Yu. Murzin

Boron nitride nanotube (BNNT) as an innovative support for carbohydrate transformation processes was evaluated, using density functional theory. The α-d-glucopyranose adsorption on a Pd30 cluster, supported on BNNT, was used to check both the local activity of topologically different metallic sites and the effects of the proximity of the BNNT surface to the same metallic sites. Detailed geometrical and electronic analyses performed on Pd30/BNNT and α-d-glucopyranose/Pd30/BNNT systems were discussed. It was observed that the deposition of the Pd30 cluster onto the BNNT support gives rise to an electronic rearrangement, determining a charge transfer from the support to the adsorbed metal cluster. The charge transfer, as shown by the analysis of molecular electrostatic potential, seems to generate electron-rich and electron-poor zones in the Pd30 cluster. The α-d-glucopyranose species, regardless the interaction geometry experienced, acts as an electron donor and preferentially adsorbs close to the electron-poor metal/support interface.


Theoretical Chemistry Accounts | 2018

DFT calculations on subnanometric metal catalysts: a short review on new supported materials

Remedios Cortese; Roberto Schimmenti; Antonio Prestianni; Dario Duca

Metal clusters have been used in catalysis for a long time, even in industrial production protocols, and a large number of theoretical and experimental studies aimed at characterizing their structure and reactivity, either when supported or not, are already present in the literature. Nevertheless, in the last years the advances made in the control of the synthesis and stabilization of subnanometric clusters promoted a renewed interest in the field. The shape and size of sub-nanometer clusters are crucial in determining their catalytic activity and selectivity. Moreover, if supported, subnanometric clusters could be highly influenced by the interactions with the support that could affect geometric and electronic properties of the catalyst. These effects also present in the case of metal nanoparticles assume an even more prominent role in the “subnano world.” DFT-based simulations are nowadays essential in elucidating and unraveling reaction mechanisms. The outstanding position of this corner of science will be highlighted through a selected number of examples present in the literature, concerning the growth and reactivity of subnanometric supported metal catalysts.


ChemPhysChem | 2013

Alkali-metal azides interacting with metal-organic frameworks.

Nerina Armata; Remedios Cortese; Dario Duca; Roberto Triolo

Interactions between alkali-metal azides and metal-organic framework (MOF) derivatives, namely, the first and third members of the isoreticular MOF (IRMOF) family, IRMOF-1 and IRMOF-3, are studied within the density functional theory (DFT) paradigm. The investigations take into account different models of the selected IRMOFs. The mutual influence between the alkali-metal azides and the π rings or Zn centers of the involved MOF derivatives are studied by considering the interactions both of the alkali-metal cations with model aromatic centers and of the alkali-metal azides with distinct sites of differently sized models of IRMOF-1 and IRMOF-3. Several exchange and correlation functionals are employed to calculate the corresponding interaction energies. Remarkably, it is found that, with increasing alkali-metal atom size, the latter decrease for cations interacting with the π-ring systems and increase for the azides interacting with the MOF fragments. The opposite behavior is explained by stabilization effects on the azide moieties and determined by the Zn atoms, which constitute the inorganic vertices of the IRMOF species. Larger cations can, in fact, coordinate more efficiently to both the aromatic center and the azide anion, and thus stabilizing bridging arrangements of the azide between one alkali-metal and two Zn atoms in an η(2) coordination mode are more favored.


Journal of Physical Chemistry C | 2015

Shape-Dependence of Pd Nanocrystal Carburization during Acetylene Hydrogenation

Micaela Crespo-Quesada; Songhak Yoon; Mingshang Jin; Antonio Prestianni; Remedios Cortese; Fernando Cárdenas-Lizana; Dario Duca; Anke Weidenkaff; Lioubov Kiwi-Minsker


Journal of Physical Chemistry C | 2014

Structure Sensitivity of 2-Methyl-3-butyn-2-ol Hydrogenation on Pd: Computational and Experimental Modeling

Antonio Prestianni; Micaela Crespo-Quesada; Remedios Cortese; Francesco Ferrante; Lioubov Kiwi-Minsker; Dario Duca


Topics in Catalysis | 2009

Structural and Kinetic DFT Characterization of Materials to Rationalize Catalytic Performance

Nerina Armata; G. Baldissin; Giampaolo Barone; Remedios Cortese; V. D’Anna; Francesco Ferrante; Sergio Giuffrida; G. Li Manni; Antonio Prestianni; Teresa Rubino; Dario Duca

Collaboration


Dive into the Remedios Cortese's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge