Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Remi Dreyfus is active.

Publication


Featured researches published by Remi Dreyfus.


Nature | 2005

Microscopic artificial swimmers

Remi Dreyfus; Jean Baudry; Marcus Roper; Marc Fermigier; Howard A. Stone; Jérôme Bibette

Microorganisms such as bacteria and many eukaryotic cells propel themselves with hair-like structures known as flagella, which can exhibit a variety of structures and movement patterns. For example, bacterial flagella are helically shaped and driven at their bases by a reversible rotary engine, which rotates the attached flagellum to give a motion similar to that of a corkscrew. In contrast, eukaryotic cells use flagella that resemble elastic rods and exhibit a beating motion: internally generated stresses give rise to a series of bends that propagate towards the tip. In contrast to this variety of swimming strategies encountered in nature, a controlled swimming motion of artificial micrometre-sized structures has not yet been realized. Here we show that a linear chain of colloidal magnetic particles linked by DNA and attached to a red blood cell can act as a flexible artificial flagellum. The filament aligns with an external uniform magnetic field and is readily actuated by oscillating a transverse field. We find that the actuation induces a beating pattern that propels the structure, and that the external fields can be adjusted to control the velocity and the direction of motion.


Journal of Fluid Mechanics | 2006

On the dynamics of magnetically driven elastic filaments

Marcus Roper; Remi Dreyfus; Jean Baudry; Marc Fermigier; Jérôme Bibette; Howard A. Stone

Following a novel realization of low-Reynolds-number swimming (Dreyfus et al. , Nature , vol. 436, 2005, p. 862), in which self-assembled filaments of paramagnetic micron-sized beads are tethered to red blood cells and then induced to swim under crossed uniform and oscillating magnetic fields, the dynamics of magnetoelastic filaments is studied. The filament is modelled as a slender elastica driven by a magnetic body torque. The model is applied to experiments of Goubault et al. ( Phys. Rev. Lett. , vol. 91, 2003, art. 260802) to predict the lifetimes of metastable static filament conformations that are known to form under uniform fields. A second experimental swimming scenario, complementary to that of Dreyfus et al. (2005), is described: filaments are capable of swimming even if not tethered to red blood cells. Yet, if both ends of the filament are left free and the material and magnetic parameters are uniform along its length then application of an oscillating transverse field can only generate homogeneous torques, and net translation is prohibited by symmetry. It is shown that fore–aft symmetry is broken when variation of the bending stiffness along the filament is accounted for by including elastic defects, which produces results consistent with the swimming phenomenology.


Nature | 2011

Self-replication of information-bearing nanoscale patterns

Tong Wang; Ruojie Sha; Remi Dreyfus; Mirjam E. Leunissen; Corinna Maass; David J. Pine; Paul M. Chaikin; Nadrian C. Seeman

DNA molecules provide what is probably the most iconic example of self-replication—the ability of a system to replicate, or make copies of, itself. In living cells the process is mediated by enzymes and occurs autonomously, with the number of replicas increasing exponentially over time without the need for external manipulation. Self-replication has also been implemented with synthetic systems, including RNA enzymes designed to undergo self-sustained exponential amplification. An exciting next step would be to use self-replication in materials fabrication, which requires robust and general systems capable of copying and amplifying functional materials or structures. Here we report a first development in this direction, using DNA tile motifs that can recognize and bind complementary tiles in a pre-programmed fashion. We first design tile motifs so they form a seven-tile seed sequence; then use the seeds to instruct the formation of a first generation of complementary seven-tile daughter sequences; and finally use the daughters to instruct the formation of seven-tile granddaughter sequences that are identical to the initial seed sequences. Considering that DNA is a functional material that can organize itself and other molecules into useful structures, our findings raise the tantalizing prospect that we may one day be able to realize self-replicating materials with various patterns or useful functions.


Soft Matter | 2009

Towards self-replicating materials of DNA-functionalized colloids

Mirjam E. Leunissen; Remi Dreyfus; Roujie Sha; Tong Wang; Nadrian C. Seeman; David J. Pine; Paul M. Chaikin

We report the first results of ongoing research that involves the creation of a new class of non-biological materials designed to self-replicate and, as a result, to grow exponentially. We propose a system design that exploits the strong specificity and thermal reversibility of the interactions between colloidal particles functionalized with complementary single-stranded DNA ‘sticky ends’. Here, we experimentally test the fundamentals of the different steps that constitute the self-replication scheme. First of all, we quantitatively study the equilibrium and kinetic aspects of the aggregation–dissociation behavior of the particles. We find that the dissociation transition is very sharp (∼1 °C) and that it occurs at unexpectedly low temperatures, with the dissociation temperature shifting further down when the fraction of sticky ends becomes smaller. The sharpness of the transition and its sensitivity to the sticky end fraction are important control parameters in our self-replication scheme. We further find that for our present purposes it is best to use a DNA construct with a double-stranded backbone, as this largely prevents unwanted hybridization events, such as secondary structure formation. The latter is seen to lead to peculiar aggregation kinetics, due to a competition between inter- and intra-particle hybridization. Finally, we show how one can obtain dual recognition at different temperatures by functionalizing a single particle species with two distinct DNA sequences and we demonstrate the formation of permanent bonds, using the chemical intercalator psoralen and long-wavelength UV exposure.


Physical Review E | 2015

Diagnosing hyperuniformity in two-dimensional, disordered, jammed packings of soft spheres

Remi Dreyfus; Ye Xu; Tim Still; Lawrence A. Hough; Arjun G. Yodh; S. Torquato

Hyperuniformity characterizes a state of matter for which (scaled) density fluctuations diminish towards zero at the largest length scales. However, the task of determining whether or not an image of an experimental system is hyperuniform is experimentally challenging due to finite-resolution, noise, and sample-size effects that influence characterization measurements. Here we explore these issues, employing video optical microscopy to study hyperuniformity phenomena in disordered two-dimensional jammed packings of soft spheres. Using a combination of experiment and simulation we characterize the possible adverse effects of particle polydispersity, image noise, and finite-size effects on the assignment of hyperuniformity, and we develop a methodology that permits improved diagnosis of hyperuniformity from real-space measurements. The key to this improvement is a simple packing reconstruction algorithm that incorporates particle polydispersity to minimize the free volume. In addition, simulations show that hyperuniformity in finite-sized samples can be ascertained more accurately in direct space than in reciprocal space. Finally, our experimental colloidal packings of soft polymeric spheres are shown to be effectively hyperuniform.


European Physical Journal E | 2009

Measuring colloidal forces with the magnetic chaining technique

Remi Dreyfus; David Lacoste; Jérôme Bibette; Jean Baudry

In 1994 Leal Calderon et al. (Phys. Rev. Lett. 72, 2959 (1994)) introduced the magnetic chaining technique to directly probe the force-distance profile between colloidal particles. In this paper, we revisit this approach in two ways. First, we describe a new experimental design which allows us to utilize sample volumes as low as a few microliters, involving femtomoles of surface active macromolecules. Secondly, we extensively describe the characterization and preparation of the magnetic colloids, and we give a quantitative evaluation of performance and resolution of the technique in terms of force and interparticle separation.


Physical Review Letters | 2015

Emergent Hyperuniformity in Periodically Driven Emulsions

Joost H. Weijs; Raphaël Jeanneret; Remi Dreyfus; Denis Bartolo

We report the self-organization of microfluidic emulsions into anomalously homogeneous structures. Upon periodic driving confined emulsions undergo a first-order transition from a reversible to an irreversible dynamics. We evidence that this dynamical transition is accompanied by structural changes at all scales yielding macroscopic yet finite hyperuniform structures. Numerical simulations are performed to single out the very ingredients responsible for the suppression of density fluctuations. We show that, as opposed to equilibrium systems, the long-range nature of the hydrodynamic interactions are not required for the formation of hyperuniform patterns, thereby suggesting a robust relation between reversibility and hyperuniformity which should hold in a broad class of periodically driven materials.


Physical review applied | 2014

Morphology of Rain Water Channeling in Systematically Varied Model Sandy Soils

Yuli Wei; Cesare M. Cejas; Remi Barrois; Remi Dreyfus; Douglas J. Durian

We visualize the formation of fingered flow in dry model sandy soils under different raining conditions using a quasi-2d experimental set-up, and systematically determine the impact of soil grain diameter and surface wetting property on water channelization phenomenon. The model sandy soils we use are random closely-packed glass beads with varied diameters and surface treatments. For hydrophilic sandy soils, our experiments show that rain water infiltrates into a shallow top layer of soil and creates a horizontal water wetting front that grows downward homogeneously until instabilities occur to form fingered flows. For hydrophobic sandy soils, in contrast, we observe that rain water ponds on the top of soil surface until the hydraulic pressure is strong enough to overcome the capillary repellency of soil and create narrow water channels that penetrate the soil packing. Varying the raindrop impinging speed has little influence on water channel formation. However, varying the rain rate causes significant changes in water infiltration depth, water channel width, and water channel separation. At a fixed raining condition, we combine the effects of grain diameter and surface hydrophobicity into a single parameter and determine its influence on water infiltration depth, water channel width, and water channel separation. We also demonstrate the efficiency of several soil water improvement methods that relate to rain water channelization phenomenon, including pre-wetting sandy soils at different level before rainfall, modifying soil surface flatness, and applying superabsorbent hydrogel particles as soil modifiers.


Physical Review E | 2017

Experimental investigation of water distribution in a two-phase zone during gravity-dominated evaporation

Cesare M. Cejas; Jean-Christophe Castaing; Larry Hough; Christian Fretigny; Remi Dreyfus

We characterize the water repartition within the partially saturated (two-phase) zone (PSZ) during evaporation from mixed wettable porous media by controlling the wettability of glass beads, their sizes, and as well the surrounding relative humidity. Here, capillary numbers are low and under these conditions, the percolating front is stabilized by gravity. Using experimental and numerical analyses, we find that the PSZ saturation decreases with the Bond number, where packing of smaller particles have higher saturation values than packing made of larger particles. Results also reveal that the extent (height) of the PSZ, as well as water saturation in the PSZ, both increase with wettability. We also numerically calculate the saturation exclusively contained in connected liquid films and results show that values are less than the expected PSZ saturation. These results strongly reflect that the two-phase zone is not solely made up of connected capillary networks but also made of disconnected water clusters or pockets. Moreover, we also find that global saturation (PSZ + full wet zone) decreases with wettability, confirming that greater quantity of water is lost via evaporation with increasing hydrophilicity. These results show that connected liquid films are favored in more-hydrophilic systems while disconnected water pockets are favored in less-hydrophilic systems.


Physical Review E | 2014

Kinetics of gravity-driven water channels under steady rainfall.

Cesare M. Cejas; Yuli Wei; Remi Barrois; Christian Fretigny; Douglas J. Durian; Remi Dreyfus

We investigate the formation of fingered flow in dry granular media under simulated rainfall using a quasi-two-dimensional experimental setup composed of a random close packing of monodisperse glass beads. Using controlled experiments, we analyze the finger instabilities that develop from the wetting front as a function of fundamental granular (particle size) and fluid properties (rainfall, viscosity). These finger instabilities act as precursors for water channels, which serve as outlets for water drainage. We look into the characteristics of the homogeneous wetting front and channel size as well as estimate relevant time scales involved in the instability formation and the velocity of the channel fingertip. We compare our experimental results with that of the well-known prediction developed by Parlange and Hill [D. E. Hill and J. Y. Parlange, Soil Sci. Soc. Am. Proc. 36, 697 (1972)]. This model is based on linear stability analysis of the growth of perturbations arising at the interface between two immiscible fluids. Results show that, in terms of morphology, experiments agree with the proposed model. However, in terms of kinetics we nevertheless account for another term that describes the homogenization of the wetting front. This result shows that the manner we introduce the fluid to a porous medium can also influence the formation of finger instabilities. The results also help us to calculate the ideal flow rate needed for homogeneous distribution of water in the soil and minimization of runoff, given the grain size, fluid density, and fluid viscosity. This could have applications in optimizing use of irrigation water.

Collaboration


Dive into the Remi Dreyfus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean Baudry

PSL Research University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Fretigny

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge