Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rémi Emonet is active.

Publication


Featured researches published by Rémi Emonet.


computer vision and pattern recognition | 2011

Extracting and locating temporal motifs in video scenes using a hierarchical non parametric Bayesian model

Rémi Emonet; Jagannadan Varadarajan; Jean-Marc Odobez

In this paper, we present an unsupervised method for mining activities in videos. From unlabeled video sequences of a scene, our method can automatically recover what are the recurrent temporal activity patterns (or motifs) and when they occur. Using non parametric Bayesian methods, we are able to automatically find both the underlying number of motifs and the number of motif occurrences in each document. The models robustness is first validated on synthetic data. It is then applied on a large set of video data from state-of-the-art papers. We show that it can effectively recover temporal activities with high semantics for humans and strong temporal information. The model is also used for prediction where it is shown to be as efficient as other approaches. Although illustrated on video sequences, this model can be directly applied to various kinds of time series where multiple activities occur simultaneously.


british machine vision conference | 2010

Probabilistic Latent Sequential Motifs: Discovering temporal activity patterns in video scenes

Jagannadan Varadarajan; Rémi Emonet; Jean-Marc Odobez

This paper introduces a novel probabilistic activity modeling approach that mines recurrent sequential patterns from documents given as word-time occurrences. In this model, documents are represented as a mixture of sequential activity motifs (or topics) and their starting occurrences. The novelties are threefold. First, unlike previous approaches where topics only modeled the co-occurrence of words at a given time instant, our topics model the co-occurrence and temporal order in which the words occur within a temporal window. Second, our model accounts for the important case where activities occur concurrently in the document. And third, our method explicitly models with latent variables the starting time of the activities within the documents, enabling to implicitly align the occurrences of the same pattern during the joint inference of the temporal topics and their starting times. The model and its robustness to the presence of noise have been validated on synthetic data. Its effectiveness is also illustrated in video activity analysis from low-level motion features, where the discovered topics capture frequent patterns that implicitly represent typical trajectories of scene objects.


computer vision and pattern recognition | 2015

Landmarks-based kernelized subspace alignment for unsupervised domain adaptation

Rahaf Aljundi; Rémi Emonet; Damien Muselet; Marc Sebban

Domain adaptation (DA) has gained a lot of success in the recent years in computer vision to deal with situations where the learning process has to transfer knowledge from a source to a target domain. In this paper, we introduce a novel unsupervised DA approach based on both subspace alignment and selection of landmarks similarly distributed between the two domains. Those landmarks are selected so as to reduce the discrepancy between the domains and then are used to non linearly project the data in the same space where an efficient subspace alignment (in closed-form) is performed. We carry out a large experimental comparison in visual domain adaptation showing that our new method outperforms the most recent unsupervised DA approaches.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2014

Temporal Analysis of Motif Mixtures Using Dirichlet Processes

Rémi Emonet; Jagannadan Varadarajan; Jean-March Odobez

In this paper, we present a new model for unsupervised discovery of recurrent temporal patterns (or motifs) in time series (or documents). The model is designed to handle the difficult case of multivariate time series obtained from a mixture of activities, that is, our observations are caused by the superposition of multiple phenomena occurring concurrently and with no synchronization. The model uses nonparametric Bayesian methods to describe both the motifs and their occurrences in documents. We derive an inference scheme to automatically and simultaneously recover the recurrent motifs (both their characteristics and number) and their occurrence instants in each document. The model is widely applicable and is illustrated on datasets coming from multiple modalities, mainly videos from static cameras and audio localization data. The rich semantic interpretation that the model offers can be leveraged in tasks such as event counting or for scene analysis. The approach is also used as a mean of doing soft camera calibration in a camera network. A thorough study of the model parameters is provided and a cross-platform implementation of the inference algorithm will be made publicly available.


computer vision and pattern recognition | 2012

Bridging the past, present and future: Modeling scene activities from event relationships and global rules

Jagannadan Varadarajan; Rémi Emonet; Jean-Marc Odobez

This paper addresses the discovery of activities and learns the underlying processes that govern their occurrences over time in complex surveillance scenes. To this end, we propose a novel topic model that accounts for the two main factors that affect these occurrences: (1) the existence of global scene states that regulate which of the activities can spontaneously occur; (2) local rules that link past activity occurrences to current ones with temporal lags. These complementary factors are mixed in the probabilistic generative process, thanks to the use of a binary random variable that selects for each activity occurrence which one of the above two factors is applicable. All model parameters are efficiently inferred using a collapsed Gibbs sampling inference scheme. Experiments on various datasets from the literature show that the model is able to capture temporal processes at multiple scales: the scene-level first order Markovian process, and causal relationships amongst activities that can be used to predict which activity can happen after another one, and after what delay, thus providing a rich interpretation of the scenes dynamical content.


advanced video and signal based surveillance | 2011

Multi-camera open space human activity discovery for anomaly detection

Rémi Emonet; Jagannadan Varadarajan; Jean-Marc Odobez

We address the discovery of typical activities in video stream contents and its exploitation for estimating the abnormality levels of these streams. Such estimates can be used to select the most interesting cameras to show to a human operator. Our contributions come from the following facets: i) the method is fully unsupervised and learns the activities from long term data; ii) the method is scalable and can efficiently handle the information provided by multiple un-calibrated cameras, jointly learning activities shared by them if it happens to be the case (e.g. when they have overlapping fields of view); iii) unlike previous methods which were mainly applied to structured urban traffic scenes, we show that ours performs well on videos from a metro environment where human activities are only loosely constrained.


PLOS ONE | 2014

Epidemic Contact Tracing via Communication Traces

Katayoun Farrahi; Rémi Emonet; Manuel Cebrian

Traditional contact tracing relies on knowledge of the interpersonal network of physical interactions, where contagious outbreaks propagate. However, due to privacy constraints and noisy data assimilation, this network is generally difficult to reconstruct accurately. Communication traces obtained by mobile phones are known to be good proxies for the physical interaction network, and they may provide a valuable tool for contact tracing. Motivated by this assumption, we propose a model for contact tracing, where an infection is spreading in the physical interpersonal network, which can never be fully recovered; and contact tracing is occurring in a communication network which acts as a proxy for the first. We apply this dual model to a dataset covering 72 students over a 9 month period, for which both the physical interactions as well as the mobile communication traces are known. Our results suggest that a wide range of contact tracing strategies may significantly reduce the final size of the epidemic, by mainly affecting its peak of incidence. However, we find that for low overlap between the face-to-face and communication interaction network, contact tracing is only efficient at the beginning of the outbreak, due to rapidly increasing costs as the epidemic evolves. Overall, contact tracing via mobile phone communication traces may be a viable option to arrest contagious outbreaks.


Water Resources Research | 2013

Clustering flood events from water quality time-series using Latent Dirichlet Allocation model

Alice H. Aubert; Romain Tavenard; Rémi Emonet; Alban de Lavenne; Simon Malinowski; Thomas Guyet; René Quiniou; Jean-Marc Odobez; Philippe Merot; Chantal Gascuel-Odoux

To improve hydro-chemical modeling and forecasting, there is a need to better understand flood-induced variability in water chemistry and the processes controlling it in watersheds. In the literature, assumptions are often made, for instance, that stream chemistry reacts differently to rainfall events depending on the season; however, methods to verify such assumptions are not well developed. Often, few floods are studied at a time and chemicals are used as tracers. Grouping similar events from large multivariate datasets using principal component analysis and clustering methods helps to explain hydrological processes; however, these methods currently have some limits (definition of flood descriptors, linear assumption, for instance). Most clustering methods have been used in the context of regionalization, focusing more on mapping results than on understanding processes. In this study, we extracted flood patterns using the probabilistic Latent Dirichlet Allocation (LDA) model, its first use in hydrology, to our knowledge. The LDA method allows multivariate temporal datasets to be considered without having to define explanatory factors beforehand or select representative floods. We analyzed a multivariate dataset from a long-term observatory (Kervidy-Naizin, western France) containing data for four solutes monitored daily for 12 years: nitrate, chloride, dissolved organic carbon, and sulfate. The LDA method extracted four different patterns that were distributed by season. Each pattern can be explained by seasonal hydrological processes. Hydro-meteorological parameters help explain the processes leading to these patterns, which increases understanding of flood-induced variability in water quality. Thus, the LDA method appears useful for analyzing long-term datasets.


international symposium on wearable computers | 2012

Socio-Technical Network Analysis from Wearable Interactions

Katayoun Farrahi; Rémi Emonet; Alois Ferscha

Wearable sensing platforms like modern smart phones have proven to be effective means in the complexity and computational social sciences. This paper draws from explicit (phone calls, SMS messaging) and implicit (proximity sensing based on Bluetooth radio signals) interaction patterns collected via smart phones and reality mining techniques to explain the dynamics of personal interactions and relationships. We consider three real human to human interaction networks, namely physical proximity, phone communication and instant messaging. We analyze a real undergraduate communitys social circles and consider various topologies, such as the interaction patterns of users with the entire community, and the interaction patterns of users within their own community. We fit distributions of various interactions, for example, showing that the distribution of users that have been in physical proximity but have never communicated by phone fits a gaussian. Finally, we consider five types of relationships, for example friendships, to see whether significant differences exist in their interaction patterns. We find statistically significant differences in the physical proximity patterns of people who are mutual friends and people who are non-mutual (or asymmetric) friends, though this difference does not exist between mutual friends and never friends, nor does it exist in their phone communication patterns. Our findings impact a wide range of data-driven applications in socio-technical systems by providing an overview of community interaction patterns which can be used for applications such as epidemiology, or in understanding the diffusion of opinions and relationships.


british machine vision conference | 2014

Contextually Constrained Deep Networks for Scene Labeling

Taygun Kekeç; Rémi Emonet; Elisa Fromont; Alain Trémeau; Christian Wolf

Learning using deep learning architectures is a difficult problem: the complexity of the prediction model and the difficulty of solving non-convex optimization problems inherent to most learning algorithms can both lead to overfitting phenomena and bad local optima. To overcome these problems we would like to constraint parts of the network using some semantic context to 1) control its capacity while still allowing complex functions to be learned 2) obtain more meaningful layers. We first propose to learn a weak convolutional network which would provide us rough label maps over the neighborhood of a pixel. Then, we incorporate this weak learner in a bigger network. This iterative process aims at increasing the interpretability by constraining some feature maps to learn precise contextual information. Using Stanford and SIFT Flow scene labeling datasets, we show how this contextual knowledge improves accuracy of state-of-the-art architectures. The approach is generic and can be applied to similar networks where contextual cues are available at training time.

Collaboration


Dive into the Rémi Emonet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Sebban

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick Reignier

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James L. Crowley

Hong Kong Baptist University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge