Rémi Fronzes
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rémi Fronzes.
Nature Reviews Microbiology | 2009
Rémi Fronzes; Peter J. Christie; Gabriel Waksman
Type IV secretion systems (T4SSs) are versatile secretion systems that are found in both Gram-negative and Gram-positive bacteria and secrete a wide range of substrates, from single proteins to protein–protein and protein–DNA complexes. They usually consist of 12 components that are organized into ATP-powered, double-membrane-spanning complexes. The structures of single soluble components or domains have been solved, but an understanding of how these structures come together has only recently begun to emerge. This Review focuses on the structural advances that have been made over the past 10 years and how the corresponding structural insights have helped to elucidate many of the details of the mechanism of type IV secretion.
Science | 2009
Rémi Fronzes; Eva Schäfer; Luchun Wang; Helen R. Saibil; Elena V. Orlova; Gabriel Waksman
Type IV secretion systems (T4SSs) are important virulence factors used by Gram-negative bacterial pathogens to inject effectors into host cells or to spread plasmids harboring antibiotic resistance genes. We report the 15 angstrom resolution cryo–electron microscopy structure of the core complex of a T4SS. The core complex is composed of three proteins, each present in 14 copies and forming a ∼1.1-megadalton two-chambered, double membrane–spanning channel. The structure is double-walled, with each component apparently spanning a large part of the channel. The complex is open on the cytoplasmic side and constricted on the extracellular side. Overall, the T4SS core complex structure is different in both architecture and composition from the other known double membrane–spanning secretion system that has been structurally characterized.
Nature | 2009
Vidya Chandran; Rémi Fronzes; Stéphane Duquerroy; Nora Cronin; Jorge Navaza; Gabriel Waksman
Type IV secretion systems are secretion nanomachines spanning the two membranes of Gram-negative bacteria. Three proteins, VirB7, VirB9 and VirB10, assemble into a 1.05 megadalton (MDa) core spanning the inner and outer membranes. This core consists of 14 copies of each of the proteins and forms two layers, the I and O layers, inserting in the inner and outer membrane, respectively. Here we present the crystal structure of a ∼0.6 MDa outer-membrane complex containing the entire O layer. This structure is the largest determined for an outer-membrane channel and is unprecedented in being composed of three proteins. Unexpectedly, this structure identifies VirB10 as the outer-membrane channel with a unique hydrophobic double-helical transmembrane region. This structure establishes VirB10 as the only known protein crossing both membranes of Gram-negative bacteria. Comparison of the cryo-electron microscopy (cryo-EM) and crystallographic structures points to conformational changes regulating channel opening and closing.
Nature | 2014
Harry H. Low; Francesca Gubellini; Angel Rivera-Calzada; Nathalie Braun; Sarah Connery; Annick Dujeancourt; Fang Lu; Adam Redzej; Rémi Fronzes; Elena V. Orlova; Gabriel Waksman
Bacterial type IV secretion systems translocate virulence factors into eukaryotic cells, distribute genetic material between bacteria and have shown potential as a tool for the genetic modification of human cells. Given the complex choreography of the substrate through the secretion apparatus, the molecular mechanism of the type IV secretion system has proved difficult to dissect in the absence of structural data for the entire machinery. Here we use electron microscopy to reconstruct the type IV secretion system encoded by the Escherichia coli R388 conjugative plasmid. We show that eight proteins assemble in an intricate stoichiometric relationship to form an approximately 3 megadalton nanomachine that spans the entire cell envelope. The structure comprises an outer membrane-associated core complex connected by a central stalk to a substantial inner membrane complex that is dominated by a battery of 12 VirB4 ATPase subunits organized as side-by-side hexameric barrels. Our results show a secretion system with markedly different architecture, and consequently mechanism, to other known bacterial secretion systems.
The EMBO Journal | 2008
Rémi Fronzes; Han Remaut; Gabriel Waksman
Bacteria commonly expose non‐flagellar proteinaceous appendages on their outer surfaces. These extracellular structures, called pili or fimbriae, are employed in attachment and invasion, biofilm formation, cell motility or protein and DNA transport across membranes. Over the past 15 years, the power of molecular and structural techniques has revolutionalized our understanding of the biogenesis, structure, function and mode of action of these bacterial organelles. Here, we review the five known classes of Gram‐negative non‐flagellar appendages from a biosynthetic and structural point of view.
Nature | 2015
Eric Durand; Van Son Nguyen; Abdelrahim Zoued; Laureen Logger; Gérard Pehau-Arnaudet; Marie-Stéphanie Aschtgen; Silvia Spinelli; Aline Desmyter; Benjamin Bardiaux; Annick Dujeancourt; Alain Roussel; Christian Cambillau; Eric Cascales; Rémi Fronzes
Bacteria share their ecological niches with other microbes. The bacterial type VI secretion system is one of the key players in microbial competition, as well as being an important virulence determinant during bacterial infections. It assembles a nano-crossbow-like structure in the cytoplasm of the attacker cell that propels an arrow made of a haemolysin co-regulated protein (Hcp) tube and a valine–glycine repeat protein G (VgrG) spike and punctures the prey’s cell wall. The nano-crossbow is stably anchored to the cell envelope of the attacker by a membrane core complex. Here we show that this complex is assembled by the sequential addition of three type VI subunits (Tss)—TssJ, TssM and TssL—and present a structure of the fully assembled complex at 11.6 Å resolution, determined by negative-stain electron microscopy. With overall C5 symmetry, this 1.7-megadalton complex comprises a large base in the cytoplasm. It extends in the periplasm via ten arches to form a double-ring structure containing the carboxy-terminal domain of TssM (TssMct) and TssJ that is anchored in the outer membrane. The crystal structure of the TssMct–TssJ complex coupled to whole-cell accessibility studies suggest that large conformational changes induce transient pore formation in the outer membrane, allowing passage of the attacking Hcp tube/VgrG spike.
Trends in Microbiology | 2008
Steffen Backert; Rémi Fronzes; Gabriel Waksman
Many type-IV secretion systems (T4SSs) of plant and human pathogens assemble a pilus used to inject virulence molecules (effectors) into host target cells. The T4SS of Agrobacterium tumefaciens consists of VirB1-VirB11 and VirD4 proteins. Whether targeting of T4SSs to the host requires a T4SS-adhesin that specifically engages host receptors for delivery of effectors has, until recently, remained unclear. Recent data of Agrobacterium and Helicobacter indicate that two classes of T4SS components, VirB2 and VirB5, might function as adhesins that mediate host-cell targeting through binding to specific host receptors. Here, we discuss this important issue and recent progress in the field.
Nature | 2012
Ekaterina Baranova; Rémi Fronzes; Abel Garcia-Pino; Nani Van Gerven; David Papapostolou; Gérard Pehau-Arnaudet; Els Pardon; Jan Steyaert; Stefan Howorka; Han Remaut
S-layers are regular two-dimensional semipermeable protein layers that constitute a major cell-wall component in archaea and many bacteria. The nanoscale repeat structure of the S-layer lattices and their self-assembly from S-layer proteins (SLPs) have sparked interest in their use as patterning and display scaffolds for a range of nano-biotechnological applications. Despite their biological abundance and the technological interest in them, structural information about SLPs is limited to truncated and assembly-negative proteins. Here we report the X-ray structure of the SbsB SLP of Geobacillus stearothermophilus PV72/p2 by the use of nanobody-aided crystallization. SbsB consists of a seven-domain protein, formed by an amino-terminal cell-wall attachment domain and six consecutive immunoglobulin-like domains, that organize into a ϕ-shaped disk-like monomeric crystallization unit stabilized by interdomain Ca2+ ion coordination. A Ca2+-dependent switch to the condensed SbsB quaternary structure pre-positions intermolecular contact zones and renders the protein competent for S-layer assembly. On the basis of crystal packing, chemical crosslinking data and cryo-electron microscopy projections, we present a model for the molecular organization of this SLP into a porous protein sheet inside the S-layer. The SbsB lattice represents a previously undescribed structural model for protein assemblies and may advance our understanding of SLP physiology and self-assembly, as well as the rational design of engineered higher-order structures for biotechnology.
PLOS Pathogens | 2013
Raphaël Laurenceau; Gérard Pehau-Arnaudet; Sonia Baconnais; Joseph Gault; Christian Malosse; Annick Dujeancourt; Nathalie Campo; Julia Chamot-Rooke; Eric Le Cam; Jean-Pierre Claverys; Rémi Fronzes
Natural genetic transformation is widely distributed in bacteria and generally occurs during a genetically programmed differentiated state called competence. This process promotes genome plasticity and adaptability in Gram-negative and Gram-positive bacteria. Transformation requires the binding and internalization of exogenous DNA, the mechanisms of which are unclear. Here, we report the discovery of a transformation pilus at the surface of competent Streptococcus pneumoniae cells. This Type IV-like pilus, which is primarily composed of the ComGC pilin, is required for transformation. We provide evidence that it directly binds DNA and propose that the transformation pilus is the primary DNA receptor on the bacterial cell during transformation in S. pneumoniae. Being a central component of the transformation apparatus, the transformation pilus enables S. pneumoniae, a major Gram-positive human pathogen, to acquire resistance to antibiotics and to escape vaccines through the binding and incorporation of new genetic material.
Nature Methods | 2015
Mohammed Kaplan; Abhishek Cukkemane; Gydo van Zundert; Siddarth Narasimhan; Mark Daniëls; Deni Mance; Gabriel Waksman; Alexandre M. J. J. Bonvin; Rémi Fronzes; Gert E. Folkers; Marc Baldus
Studying biomolecules at atomic resolution in their native environment is the ultimate aim of structural biology. We investigated the bacterial type IV secretion system core complex (T4SScc) by cellular dynamic nuclear polarization–based solid-state nuclear magnetic resonance spectroscopy to validate a structural model previously generated by combining in vitro and in silico data. Our results indicate that T4SScc is well folded in the cellular setting, revealing protein regions that had been elusive when studied in vitro.