Remi-Martin Laberge
Buck Institute for Research on Aging
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Remi-Martin Laberge.
Developmental Cell | 2014
Marco Demaria; Naoko Ohtani; Sameh A. Youssef; Francis Rodier; Wendy Toussaint; James R. Mitchell; Remi-Martin Laberge; Jan Vijg; Harry van Steeg; Martijn E.T. Dollé; Jan H.J. Hoeijmakers; Alain de Bruin; Eiji Hara; Judith Campisi
Cellular senescence suppresses cancer by halting the growth of premalignant cells, yet the accumulation of senescent cells is thought to drive age-related pathology through a senescence-associated secretory phenotype (SASP), the function of which is unclear. To understand the physiological role(s) of the complex senescent phenotype, we generated a mouse model in which senescent cells can be visualized and eliminated in living animals. We show that senescent fibroblasts and endothelial cells appear very early in response to a cutaneous wound, where they accelerate wound closure by inducing myofibroblast differentiation through the secretion of platelet-derived growth factor AA (PDGF-AA). In two mouse models, topical treatment of senescence-free wounds with recombinant PDGF-AA rescued the delayed wound closure and lack of myofibroblast differentiation. These findings define a beneficial role for the SASP in tissue repair and help to explain why the SASP evolved.
Molecular Biology of the Cell | 2012
Adam Freund; Remi-Martin Laberge; Marco Demaria; Judith Campisi
This study rigorously defines lamin B1 loss as a marker of senescence in response to all classic signals of senescence, including DNA damage, oncogene activation, and replicative exhaustion. This decline is induced by activation of either the p53 or the pRb pathway and occurs in vivo in response to a senescence-inducing dose of radiation.
eLife | 2013
Nicole A. Rapicavoli; Kun Qu; Jiajing Zhang; Megan Mikhail; Remi-Martin Laberge; Howard Y. Chang
Pseudogenes are thought to be inactive gene sequences, but recent evidence of extensive pseudogene transcription raised the question of potential function. Here we discover and characterize the sets of mouse lncRNAs induced by inflammatory signaling via TNFα. TNFα regulates hundreds of lncRNAs, including 54 pseudogene lncRNAs, several of which show exquisitely selective expression in response to specific cytokines and microbial components in a NF-κB-dependent manner. Lethe, a pseudogene lncRNA, is selectively induced by proinflammatory cytokines via NF-κB or glucocorticoid receptor agonist, and functions in negative feedback signaling to NF-κB. Lethe interacts with NF-κB subunit RelA to inhibit RelA DNA binding and target gene activation. Lethe level decreases with organismal age, a physiological state associated with increased NF-κB activity. These findings suggest that expression of pseudogenes lncRNAs are actively regulated and constitute functional regulators of inflammatory signaling. DOI: http://dx.doi.org/10.7554/eLife.00762.001
Cancer Microenvironment | 2012
Remi-Martin Laberge; Pierre Awad; Judith Campisi; Pierre-Yves Desprez
Depending on the cell type and tissue environment, epithelial and mesenchymal cell phenotypes are not static and can be highly dynamic. Epithelial-mesenchymal transitions (EMTs) and reverse EMTs provide flexibility during embryogenesis. While EMTs are a critical normal process during development and wound healing, properties of the EMT have been implicated in human pathology, particularly cancer metastasis. A normal undamaged epithelium does not typically exhibit features of an EMT. However, particularly under the influence of the surrounding microenvironment, cancer cells may reactivate developmental phenotypes out of context in the adult. This reactivation, such as the EMT, can facilitate tumor cell invasion and metastasis, and therefore is a major mechanism of tumor progression. Conversely, cellular senescence, which is associated with aging, is a process by which cells enter a state of permanent cell cycle arrest, thereby constituting a potent tumor suppressive mechanism. However, accumulating evidence shows that senescent cells can have deleterious effects on the tissue microenvironment. The most significant of these effects is the acquisition of a senescence-associated secretory phenotype (SASP) that turns senescent fibroblasts into pro-inflammatory cells having the ability to promote tumor progression, in part by inducing an EMT in nearby epithelial cells. Here, we summarize the potential impacts of SASP factors, particularly interleukins, on tissue microenvironments and their ability to stimulate tumor progression through induction of an EMT.
Aging Cell | 2012
Remi-Martin Laberge; Lili Zhou; Melissa R. Sarantos; Francis Rodier; Adam Freund; Peter L.J. de Keizer; Su Liu; Marco Demaria; Yu-Sheng Cong; Pankaj Kapahi; Pierre-Yves Desprez; Robert E. Hughes; Judith Campisi
Cellular senescence suppresses cancer by arresting the proliferation of cells at risk for malignant transformation. Recently, senescent cells were shown to secrete numerous cytokines, growth factors, and proteases that can alter the tissue microenvironment and may promote age‐related pathology. To identify small molecules that suppress the senescence‐associated secretory phenotype (SASP), we developed a screening protocol using normal human fibroblasts and a library of compounds that are approved for human use. Among the promising library constituents was the glucocorticoid corticosterone. Both corticosterone and the related glucocorticoid cortisol decreased the production and secretion of selected SASP components, including several pro‐inflammatory cytokines. Importantly, the glucocorticoids suppressed the SASP without reverting the tumor suppressive growth arrest and were efficacious whether cells were induced to senesce by ionizing radiation or strong mitogenic signals delivered by oncogenic RAS or MAP kinase kinase 6 overexpression. Suppression of the prototypical SASP component IL‐6 required the glucocorticoid receptor, which, in the presence of ligand, inhibited IL‐1α signaling and NF‐κB transactivation activity. Accordingly, co‐treatments combining glucocorticoids with the glucocorticoid antagonist RU‐486 or recombinant IL‐1α efficiently reestablished NF‐κB transcriptional activity and IL‐6 secretion. Our findings demonstrate feasibility of screening for compounds that inhibit the effects of senescent cells. They further show that glucocorticoids inhibit selected components of the SASP and suggest that corticosterone and cortisol, two FDA‐approved drugs, might exert their effects in part by suppressing senescence‐associated inflammation.
Journal of Internal Medicine | 2013
Shankar J. Chinta; Christopher A. Lieu; Marco Demaria; Remi-Martin Laberge; Judith Campisi; Julie K. Andersen
Exposure to environmental toxins is associated with a variety of age‐related diseases including cancer and neurodegeneration. For example, in Parkinsons disease (PD), chronic environmental exposure to certain toxins has been linked to the age‐related development of neuropathology. Neuronal damage is believed to involve the induction of neuroinflammatory events as a consequence of glial cell activation. Cellular senescence is a potent anti‐cancer mechanism that occurs in a number of proliferative cell types and causes the arrest of proliferation of cells at risk of malignant transformation following exposure to potentially oncogenic stimuli. With age, senescent cells accumulate and express a senescence‐associated secretory phenotype (SASP; that is the robust secretion of many inflammatory cytokines, growth factors and proteases). Whereas cell senescence in peripheral tissues has been causally linked to a number of age‐related pathologies, little is known about the induction of cellular senescence and the SASP in the brain. On the basis of recently reported findings, we propose that environmental stressors associated with PD may act in part by eliciting senescence and the SASP within non neuronal glial cells in the ageing brain, thus contributing to the characteristic decline in neuronal integrity that occurs in this disorder.
Cell Death and Disease | 2013
Remi-Martin Laberge; Adler D; Marco Demaria; Mechtouf N; Teachenor R; Cardin Gb; Pierre-Yves Desprez; Judith Campisi; Francis Rodier
Senescence is a cellular response to damage and stress. The senescence response prevents cancer by suppressing the proliferation of cells with a compromised genome and contributes to optimal wound healing in normal tissues. Persistent senescent cells are also thought to drive aging and age-associated pathologies through their secretion of inflammatory factors that modify the tissue microenvironment and alter the function of nearby normal or transformed cells. Understanding how senescent cells alter the microenvironment would be aided by the ability to induce or eliminate senescent cells at will in vivo. Here, we combine the use of the synthetic nucleoside analog ganciclovir (GCV) with herpes simplex virus thymidine kinase (HSVtk) activity to create or eliminate senescent human cells. We show that low concentrations of GCV induce senescence through the accumulation of nuclear DNA damage while higher concentrations of GCV, similar to those used in vivo, kill non-dividing senescent cells via mitochondrial DNA (mtDNA) damage and caspase-dependent apoptosis. Using this system, we effectively eliminated xenografted normal human senescent fibroblasts or induced senescence in human breast cancer cells in vivo. Thus, cellular senescence and mtDNA damage are outcomes of synthetic nucleoside analog treatment, indicating that the GCV–HSVtk combination can be used effectively to promote the targeted formation or eradication of senescent cells.
Aging Cell | 2018
Xin Zhang; Suping Zhang; Xingui Liu; Yingying Wang; Jianhui Chang; Xuan Zhang; Samuel G. Mackintosh; Alan J. Tackett; Yonghan He; Dongwen Lv; Remi-Martin Laberge; Judith Campisi; Jianrong Wang; Guangrong Zheng; Daohong Zhou
The selective depletion of senescent cells (SCs) by small molecules, termed senolytic agents, is a promising therapeutic approach for treating age‐related diseases and chemotherapy‐ and radiotherapy‐induced side effects. Piperlongumine (PL) was recently identified as a novel senolytic agent. However, its mechanism of action and molecular targets in SCs was unknown and thus was investigated. Specifically, we used a PL‐based chemical probe to pull‐down PL‐binding proteins from live cells and then mass spectrometry‐based proteomic analysis to identify potential molecular targets of PL in SCs. One prominent target was oxidation resistance 1 (OXR1), an important antioxidant protein that regulates the expression of a variety of antioxidant enzymes. We found that OXR1 was upregulated in senescent human WI38 fibroblasts. PL bound to OXR1 directly and induced its degradation through the ubiquitin‐proteasome system in an SC‐specific manner. The knockdown of OXR1 expression by RNA interference significantly increased the production of reactive oxygen species in SCs in conjunction with the downregulation of antioxidant enzymes such as heme oxygenase 1, glutathione peroxidase 2, and catalase, but these effects were much less significant when OXR1 was knocked down in non‐SCs. More importantly, knocking down OXR1 selectively induced apoptosis in SCs and sensitized the cells to oxidative stress caused by hydrogen peroxide. These findings provide new insights into the mechanism by which SCs are highly resistant to oxidative stress and suggest that OXR1 is a novel senolytic target that can be further exploited for the development of new senolytic agents.
Aging (Albany NY) | 2010
Peter L.J. de Keizer; Remi-Martin Laberge; Judith Campisi
Archive | 2013
Keizer Peterus Leonardus Josephus De; Judith Campisi; Remi-Martin Laberge