Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Remigiusz A. Serwa is active.

Publication


Featured researches published by Remigiusz A. Serwa.


Nature Chemistry | 2014

Validation of N -myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach

Megan H. Wright; Barbara Clough; Rackham; Kaveri Rangachari; James A. Brannigan; Munira Grainger; David K. Moss; Andrew R. Bottrill; William P. Heal; Malgorzata Broncel; Remigiusz A. Serwa; Declan Brady; David J. Mann; Robin J. Leatherbarrow; Rita Tewari; Anthony J. Wilkinson; Anthony A. Holder; Edward W. Tate

Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase.


Nature Communications | 2014

Global Profiling of Co- and Post-Translationally N-Myristoylated Proteomes in Human Cells.

Emmanuelle Thinon; Remigiusz A. Serwa; Malgorzata Broncel; James A. Brannigan; Ute Brassat; Megan H. Wright; William P. Heal; Anthony J. Wilkinson; David J. Mann; Edward W. Tate

Protein N-myristoylation is a ubiquitous co- and post-translational modification that has been implicated in the development and progression of a range of human diseases. Here, we report the global N-myristoylated proteome in human cells determined using quantitative chemical proteomics combined with potent and specific human N-myristoyltransferase (NMT) inhibition. Global quantification of N-myristoylation during normal growth or apoptosis allowed the identification of >100 N-myristoylated proteins, >95% of which are identified for the first time at endogenous levels. Furthermore, quantitative dose response for inhibition of N-myristoylation is determined for >70 substrates simultaneously across the proteome. Small-molecule inhibition through a conserved substrate-binding pocket is also demonstrated by solving the crystal structures of inhibitor-bound NMT1 and NMT2. The presented data substantially expand the known repertoire of co- and post-translational N-myristoylation in addition to validating tools for the pharmacological inhibition of NMT in living cells.


Chemical Science | 2010

Site-specific PEGylation of proteins by a Staudinger-phosphite reaction

Remigiusz A. Serwa; Paul Majkut; Benjamin Horstmann; Jean‐Marie Swiecicki; Michael Gerrits; Eberhard Krause; Christian P. R. Hackenberger

Current protocols in protein bioengineering allow the site-specific incorporation of chemical reporter moieties. Subsequently, these functional groups can be chemoselectively transformed to decorate proteins with charged and oversized functional units. Based on our recent report on the chemoselective reaction of azides with phosphites, we now apply the Staudinger-phosphite reaction to an efficient and metal-free PEGylation of an azide-containing protein with symmetrical phosphites. Thereby, two types of branched oligoethylene glycol scaffolds are generated, which deliver either a stable or light-cleavable protein-PEG conjugate. Furthermore, we demonstrate that the Staudinger-phosphite reaction is an efficient transformation in both aqueous media as well as in a highly crowded bacterial cell lysate.


Analytical Biochemistry | 2012

A fluorescence-based assay for N-myristoyltransferase activity.

Goncalves; James A. Brannigan; Emmanuelle Thinon; To Olaleye; Remigiusz A. Serwa; S Lanzarone; Anthony J. Wilkinson; Edward W. Tate; Robin J. Leatherbarrow

N-myristoylation is the irreversible attachment of a C(14) fatty acid, myristic acid, to the N-terminal glycine of a protein via formation of an amide bond. This modification is catalyzed by myristoyl-coenzyme A (CoA):protein N-myristoyltransferase (NMT), an enzyme ubiquitous in eukaryotes that is up-regulated in several cancers. Here we report a sensitive fluorescence-based assay to study the enzymatic activity of human NMT1 and NMT2 based on detection of CoA by 7-diethylamino-3-(4-maleimido-phenyl)-4-methylcoumarin. We also describe expression and characterization of NMT1 and NMT2 and assay validation with small molecule inhibitors. This assay should be broadly applicable to NMTs from a range of organisms.


Angewandte Chemie | 2015

Multifunctional Reagents for Quantitative Proteome‐Wide Analysis of Protein Modification in Human Cells and Dynamic Profiling of Protein Lipidation During Vertebrate Development

Malgorzata Broncel; Remigiusz A. Serwa; Paulina Ciepla; Eberhard Krause; Margaret J. Dallman; Anthony I. Magee; Edward W. Tate

Novel multifunctional reagents were applied in combination with a lipid probe for affinity enrichment of myristoylated proteins and direct detection of lipid-modified tryptic peptides by mass spectrometry. This method enables high-confidence identification of the myristoylated proteome on an unprecedented scale in cell culture, and allowed the first quantitative analysis of dynamic changes in protein lipidation during vertebrate embryonic development.


Journal of the American Chemical Society | 2014

Site-specifically phosphorylated lysine peptides.

Jordi Bertran-Vicente; Remigiusz A. Serwa; Michael Schumann; Peter Schmieder; Eberhard Krause; Christian P. R. Hackenberger

Protein phosphorylation controls major processes in cells. Although phosphorylation of serine, threonine, and tyrosine and also recently histidine and arginine are well-established, the extent and biological significance of lysine phosphorylation has remained elusive. Research in this area has been particularly limited by the inaccessibility of peptides and proteins that are phosphorylated at specific lysine residues, which are incompatible with solid-phase peptide synthesis (SPPS) due to the intrinsic acid lability of the P(═O)-N phosphoramidate bond. To address this issue, we have developed a new synthetic route for the synthesis of site-specifically phospholysine (pLys)-containing peptides by employing the chemoselectivity of the Staudinger-phosphite reaction. Our synthetic approach relies on the SPPS of unprotected ε-azido lysine-containing peptides and their subsequent reaction to phosphoramidates with phosphite esters before they are converted into the natural modification via UV irradiation or basic deprotection. With these peptides in hand, we demonstrate that electron-transfer dissociation tandem mass spectrometry can be used for unambiguous assignment of phosphorylated-lysine residues within histone peptides and that these peptides can be detected in cell lysates using a bottom-up proteomic approach. This new tagging method is expected to be an essential tool for evaluating the biological relevance of lysine phosphorylation.


Angewandte Chemie | 2013

Stabilization of Peptides for Intracellular Applications by Phosphoramidate‐Linked Polyethylene Glycol Chains

Nicole Nischan; Alokta Chakrabarti; Remigiusz A. Serwa; Petra H. M. Bovee-Geurts; Roland Brock; Christian P. R. Hackenberger

PEG intracellularly! Although long known to enhance residence half-life of peptides in serum and lysates, the effect of PEGylation on biological probes in cells has received only limited attention. Here it is shown that phosphoramidate-linked PEGylated proapoptotic peptides display a dramatically increased stability in Jurkat cell lysate and a homogenous intracellular distribution as well as high apoptotic activity after introduction into cells.


Chemistry & Biology | 2015

Global Analysis of Protein N-Myristoylation and Exploration of N-Myristoyltransferase as a Drug Target in the Neglected Human Pathogen Leishmania donovani

Megan H. Wright; Daniel Paape; Elisabeth M. Storck; Remigiusz A. Serwa; Deborah F. Smith; Edward W. Tate

Summary N-Myristoyltransferase (NMT) modulates protein function through the attachment of the lipid myristate to the N terminus of target proteins, and is a promising drug target in eukaryotic parasites such as Leishmania donovani. Only a small number of NMT substrates have been characterized in Leishmania, and a global picture of N-myristoylation is lacking. Here, we use metabolic tagging with an alkyne-functionalized myristic acid mimetic in live parasites followed by downstream click chemistry and analysis to identify lipidated proteins in both the promastigote (extracellular) and amastigote (intracellular) life stages. Quantitative chemical proteomics is used to profile target engagement by NMT inhibitors, and to define the complement of N-myristoylated proteins. Our results provide new insight into the multiple pathways modulated by NMT and the pleiotropic effects of NMT inhibition. This work constitutes the first global experimental analysis of protein lipidation in Leishmania, and reveals the extent of NMT-related biology yet to be explored for this neglected human pathogen.


Journal of Biophotonics | 2013

Automated fluorescence lifetime imaging plate reader and its application to Förster resonant energy transfer readout of Gag protein aggregation

Dominic Alibhai; Douglas J. Kelly; Sean C. Warren; Sunil Kumar; Anca Margineau; Remigiusz A. Serwa; Emmanuelle Thinon; Yuriy Alexandrov; Edward J. Murray; Frank Stuhmeier; Edward W. Tate; Mark A. A. Neil; Christopher Dunsby; Paul M. W. French

Fluorescence lifetime measurements can provide quantitative readouts of local fluorophore environment and can be applied to biomolecular interactions via Förster resonant energy transfer (FRET). Fluorescence lifetime imaging (FLIM) can therefore provide a high content analysis (HCA) modality to map protein-protein interactions (PPIs) with applications in drug discovery, systems biology and basic research. We present here an automated multiwell plate reader able to perform rapid unsupervised optically sectioned FLIM of fixed and live biological samples and illustrate its potential to assay PPIs through application to Gag protein aggregation during the HIV life cycle. We demonstrate both hetero-FRET and homo-FRET readouts of protein aggregation and report the first quantitative evaluation of a FLIM HCA assay by generating dose response curves through addition of an inhibitor of Gag myristoylation. Z ′ factors exceeding 0.6 are realised for this FLIM FRET assay. Fluorescence lifetime plate map with representative images of high and low FRET cells and corresponding dose response plot.


Chemistry & Biology | 2015

Systems Analysis of Protein Fatty Acylation in Herpes Simplex Virus-Infected Cells Using Chemical Proteomics

Remigiusz A. Serwa; Fernando Abaitua; Eberhard Krause; Edward W. Tate; Peter O’Hare

Summary Protein fatty acylation regulates diverse aspects of cellular function and organization and plays a key role in host immune responses to infection. Acylation also modulates the function and localization of virus-encoded proteins. Here, we employ chemical proteomics tools, bio-orthogonal probes, and capture reagents to study myristoylation and palmitoylation during infection with herpes simplex virus (HSV). Using in-gel fluorescence imaging and quantitative mass spectrometry, we demonstrate a generalized reduction in myristoylation of host proteins, whereas palmitoylation of host proteins, including regulators of interferon and tetraspanin family proteins, was selectively repressed. Furthermore, we found that a significant fraction of the viral proteome undergoes palmitoylation; we identified a number of virus membrane glycoproteins, structural proteins, and kinases. Taken together, our results provide broad oversight of protein acylation during HSV infection, a roadmap for similar analysis in other systems, and a resource with which to pursue specific analysis of systems and functions.

Collaboration


Dive into the Remigiusz A. Serwa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Gerrits

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge