Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Remo Frei is active.

Publication


Featured researches published by Remo Frei.


Gut | 2012

Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: potential role for myeloid and plasmacytoid dendritic cells

Patrycja Konieczna; David Groeger; Mario Ziegler; Remo Frei; Ruth Ferstl; Fergus Shanahan; Eamonn M. M. Quigley; Barry Kiely; Cezmi A. Akdis; Liam O'Mahony

Background Intestinal homoeostasis is dependent on immunological tolerance to the microbiota. Objective To (1) determine if a probiotic could induce Foxp3 T cells in humans; (2) to elucidate the molecular mechanisms, which are involved in the induction of Foxp3 T cells by human dendritic cells. Design Cytokine secretion and Foxp3 expression were assessed in human volunteers following Bifidobacterium infantis feeding. Monocyte-derived dendritic cells (MDDCs), myeloid dendritic cells (mDCs) and plasmacytoid dendritic cells (pDCs) were incubated in vitro with B infantis and autologous lymphocytes. Transcription factor expression, costimulatory molecule expression, cytokine secretion, retinoic acid and tryptophan metabolism were analysed. Results Volunteers fed B infantis displayed a selective increase in secretion of interleukin (IL)-10 and enhanced Foxp3 expression in peripheral blood. In vitro, MDDCs, mDCs and pDCs expressed indoleamine 2,3-dioxygenase and secreted IL-10, but not IL-12p70, in response to B infantis. MDDC and mDC IL-10 secretion was Toll-like receptor (TLR)-2/6 dependent, while pDC IL-10 secretion was TLR-9 dependent. In addition, MDDCs and mDCs expressed RALDH2, which was TLR-2 and DC-SIGN dependent. B infantis-stimulated MDDCs, mDCs and pDCs induced T cell Foxp3 expression. TLR-2, DC-SIGN and retinoic acid were required for MDDC and mDC induction of Foxp3 T cells, while pDCs required indoleamine 2,3-dioxygenase. Conclusions B infantis administration to humans selectively promotes immunoregulatory responses, suggesting that this microbe may have therapeutic utility in patients with inflammatory disease. Cross-talk between multiple pattern-recognition receptors and metabolic pathways determines the innate and subsequent T regulatory cell response to B infantis. These findings link nutrition, microbiota and the induction of tolerance within the gastrointestinal mucosa.


The Journal of Allergy and Clinical Immunology | 2011

Prenatal animal contact and gene expression of innate immunity receptors at birth are associated with atopic dermatitis

Caroline Roduit; Johanna Wohlgensinger; Remo Frei; S. Bitter; Christian Bieli; Susanne Loeliger; Gisela Büchele; Josef Riedler; Jean-Charles Dalphin; Sami Remes; Marjut Roponen; Juha Pekkanen; Michael Kabesch; Bianca Schaub; Erika von Mutius; Charlotte Braun-Fahrländer; Roger Lauener

BACKGROUND Cross-sectional studies have suggested that prenatal farm exposures might protect against allergic disease and increase the expression of receptors of the innate immune system. However, epidemiologic evidence supporting the association with atopic dermatitis remains inconsistent. OBJECTIVE To study the association between prenatal farm-related exposures and atopic dermatitis in a prospective study. We further analyzed the association between the expression of innate immune genes at birth and atopic dermatitis. METHODS A total of 1063 children who participated in a birth cohort study, Protection against Allergy-Study in Rural Environments, were included in this study. Doctor diagnosis of atopic dermatitis was reported by the parents from 1 to 2 years of age by questionnaire. Gene expression of Toll-like receptors (TLRs) and CD14 was assessed in cord blood leukocytes by quantitative PCR. RESULTS Maternal contact with farm animals and cats during pregnancy had a significantly protective effect on atopic dermatitis in the first 2 years of life. The risk of atopic dermatitis was reduced by more than half among children with mothers having contact with 3 or more farm animal species during pregnancy compared with children with mothers without contact (adjusted odds ratio, 0.43; 95% CI, 0.19-0.97). Elevated expression of TLR5 and TLR9 in cord blood was associated with decreased doctor diagnosis of atopic dermatitis. A significant interaction between polymorphism in TLR2 and prenatal cat exposure was observed in atopic dermatitis. CONCLUSION Maternal contact with farm animals and cats during pregnancy has a protective effect on the development of atopic dermatitis in early life, which is associated with a lower expression of innate immune receptors at birth.


The Journal of Allergy and Clinical Immunology | 2014

Increased regulatory T-cell numbers are associated with farm milk exposure and lower atopic sensitization and asthma in childhood

Anna Lluis; Martin Depner; Béatrice Gaugler; Philippe Saas; Vera Isabel Casaca; Diana Raedler; Sven Michel; Jörg Tost; Jing Liu; Jon Genuneit; Petra Ina Pfefferle; Marjut Roponen; Juliane Weber; Charlotte Braun-Fahrländer; Josef Riedler; Roger Lauener; Dominique A. Vuitton; Jean-Charles Dalphin; Juha Pekkanen; Erika von Mutius; Bianca Schaub; Anne M. Karvonen; Maija-Riitta Hirvonen; Pekka Tiittanen; S. Remes; Vincent Kaulek; Marie-Laure Dalphin; Gisela Büchele; S. Bitter; Georg Loss

BACKGROUND European cross-sectional studies have suggested that prenatal and postnatal farm exposure decreases the risk of allergic diseases in childhood. Underlying immunologic mechanisms are still not understood but might be modulated by immune-regulatory cells early in life, such as regulatory T (Treg) cells. OBJECTIVE We sought to assess whether Treg cells from 4.5-year-old children from the Protection against Allergy: Study in Rural Environments birth cohort study are critical in the atopy and asthma-protective effect of farm exposure and which specific exposures might be relevant. METHODS From 1133 children, 298 children were included in this study (149 farm and 149 reference children). Detailed questionnaires until 4 years of age assessed farming exposures over time. Treg cells were characterized as upper 20% CD4(+)CD25(+) forkhead box protein 3 (FOXP3)(+) (intracellular) in PBMCs before and after stimulation (with phorbol 12-myristate 13-acetate/ionomycin or LPS), and FOXP3 demethylation was assessed. Atopic sensitization was defined by specific IgE measurements; asthma was defined by a doctors diagnosis. RESULTS Treg cells were significantly increased in farm-exposed children after phorbol 12-myristate 13-acetate/ionomycin and LPS stimulation. Exposure to farm milk was defined as a relevant independent farm-related exposure supported by higher FOXP3 demethylation. Treg cell (upper 20% CD4(+)CD25(+), FOXP3(+) T cells) numbers were significantly negatively associated with doctor-diagnosed asthma (LPS stimulated: adjusted odds ratio, 0.26; 95% CI, 0.08-0.88) and perennial IgE (unstimulated: adjusted odds ratio, 0.21; 95% CI, 0.08-0.59). Protection against asthma by farm milk exposure was partially mediated by Treg cells. CONCLUSIONS Farm milk exposure was associated with increased Treg cell numbers on stimulation in 4.5-year-old children and might induce a regulatory phenotype early in life, potentially contributing to a protective effect for the development of childhood allergic diseases.


The Journal of Allergy and Clinical Immunology | 2014

Increased food diversity in the first year of life is inversely associated with allergic diseases

Caroline Roduit; Remo Frei; Martin Depner; Bianca Schaub; Georg Loss; Jon Genuneit; Petra Ina Pfefferle; Anne M. Karvonen; Josef Riedler; Jean-Charles Dalphin; Juha Pekkanen; Erika von Mutius; Charlotte Braun-Fahrländer; Roger Lauener

BACKGROUND The role of dietary factors in the development of allergies is a topic of debate, especially the potential associations between infant feeding practices and allergic diseases. Previously, we reported that increased food diversity introduced during the first year of life reduced the risk of atopic dermatitis. OBJECTIVE In this study we investigated the association between the introduction of food during the first year of life and the development of asthma, allergic rhinitis, food allergy, or atopic sensitization, taking precautions to address reverse causality. We further analyzed the association between food diversity and gene expression of T-cell markers and of Cε germline transcript, reflecting antibody isotype switching to IgE, measured at 6 years of age. METHODS Eight hundred fifty-six children who participated in a birth cohort study, Protection Against Allergy Study in Rural Environments/EFRAIM, were included. Feeding practices were reported by parents in monthly diaries during the first year of life. Data on environmental factors and allergic diseases were collected from questionnaires administered from birth up to 6 years of age. RESULTS An increased diversity of complementary food introduced in the first year of life was inversely associated with asthma with a dose-response effect (adjusted odds ratio with each additional food item introduced, 0.74 [95% CI, 0.61-0.89]). A similar effect was observed for food allergy and food sensitization. Furthermore, increased food diversity was significantly associated with an increased expression of forkhead box protein 3 and a decreased expression of Cε germline transcript. CONCLUSION An increased diversity of food within the first year of life might have a protective effect on asthma, food allergy, and food sensitization and is associated with increased expression of a marker for regulatory T cells.


Allergy | 2012

Microbiota and dietary interactions: an update to the hygiene hypothesis?

Remo Frei; R. Lauener; Liam O'Mahony

The dramatic increase in the incidence and severity of allergy and asthma has been proposed to be linked with an altered exposure to, and colonization by, micro‐organisms, particularly early in life. However, other lifestyle factors such as diet and physical activity are also thought to be important, and it is likely that multiple environmental factors with currently unrecognized interactions contribute to the atopic state. This review will focus on the potential role of microbial metabolites in immunoregulatory functions and highlights the known molecular mechanisms, which may mediate the interactions between diet, microbiota, and protection from allergy and asthma.


Current Opinion in Gastroenterology | 2015

Prebiotics, probiotics, synbiotics, and the immune system: experimental data and clinical evidence.

Remo Frei; Mübeccel Akdis; Liam O'Mahony

Purpose of review The intestinal immune system is constantly exposed to foreign antigens, which for the most part should be tolerated. Certain probiotics, prebiotics, and synbiotics are able to influence immune responses. In this review, we highlight the recent publications (within the last 2 years) that have substantially progressed this field. Recent findings The immunological mechanisms underpinning probiotics, prebiotics, and synbiotics effects continue to be better defined with novel mechanisms being described for dendritic cells, epithelial cells, T regulatory cells, effector lymphocytes, natural killer T cells, and B cells. Many of the mechanisms being described are bacterial strain or metabolite specific, and should not be extrapolated to other probiotics or prebiotics. In addition, the timing of intervention seems to be important, with potentially the greatest effects being observed early in life. Summary In this review, we discuss the recent findings relating to probiotics, prebiotics, and synbiotics, specifically their effects on immunological functions.


The Journal of Allergy and Clinical Immunology | 2013

Histamine receptor 2 modifies dendritic cell responses to microbial ligands

Remo Frei; Ruth Ferstl; Patrycja Konieczna; Mario Ziegler; Tünde Simon; Tulia Mateus Rugeles; Susanne Mailand; Takeshi Watanabe; Roger Lauener; Cezmi A. Akdis; Liam O'Mahony

BACKGROUND The induction of tolerance and protective immunity to microbes is significantly influenced by host- and microbiota-derived metabolites, such as histamine. OBJECTIVE We sought to identify the molecular mechanisms for histamine-mediated modulation of pattern recognition receptor signaling. METHODS Human monocyte-derived dendritic cells (MDDCs), myeloid dendritic cells, and plasmacytoid dendritic cells were examined. Cytokine secretion, gene expression, and transcription factor activation were measured after stimulation with microbial ligands and histamine. Histamine receptor 2 (H₂R)-deficient mice, histamine receptors, and their signaling pathways were investigated. RESULTS Histamine suppressed MDDC chemokine and proinflammatory cytokine secretion, nuclear factor κB and activator protein 1 activation, mitogen-activated protein kinase phosphorylation, and T(H)1 polarization of naive lymphocytes, whereas IL-10 secretion was enhanced in response to LPS and Pam3Cys. Histamine also suppressed LPS-induced myeloid dendritic cell TNF-α secretion and suppressed CpG-induced plasmacytoid dendritic cell IFN-α gene expression. H₂R signaling through cyclic AMP and exchange protein directly activated by cyclic AMP was required for the histamine effect on LPS-induced MDDC responses. Lactobacillus rhamnosus, which secretes histamine, significantly suppressed Peyer patch IL-2, IL-4, IL-5, IL-12, TNF-α, and GM-CSF secretion in wild-type but not H₂R-deficient animals. CONCLUSION Both host- and microbiota-derived histamine significantly alter the innate immune response to microbes through H₂R.


PLOS ONE | 2010

MHC Class II Molecules Enhance Toll-Like Receptor Mediated Innate Immune Responses

Remo Frei; Johanna Steinle; Thomas Birchler; Susanne Loeliger; Caroline Roduit; Dirk Steinhoff; Reinhart Seibl; Katja Büchner; Reinhard Seger; Walter Reith; Roger Lauener

Background Major histocompatibility complex (MHC) class II molecules play crucial roles in immune activation by presenting foreign peptides to antigen-specific T helper cells and thereby inducing adaptive immune responses. Although adaptive immunity is a highly effective defense system, it takes several days to become fully operational and needs to be triggered by danger-signals generated during the preceding innate immune response. Here we show that MHC class II molecules synergize with Toll-like receptor (TLR) 2 and TLR4 in inducing an innate immune response. Methodology/Principal Findings We found that co-expression of MHC class II molecules and TLR2 or TLR4 in human embryonic kidney (HEK) cells 293 leads to enhanced production of the anti-microbial peptide human-β-defensin (hBD) 2 after treatment with TLR2 stimulus bacterial lipoprotein (BLP) or TLR4 ligand lipopolysaccharide (LPS), respectively. Furthermore, we found that peritoneal macrophages of MHC class II knock-out mice show a decreased responsiveness to TLR2 and TLR4 stimuli compared to macrophages of wild-type mice. Finally, we show that MHC class II molecules are physically and functionally associated with TLR2 in lipid raft domains of the cell membrane. Conclusions/Significance These results demonstrate that MHC class II molecules are, in addition to their central role in adaptive immunity, also implicated in generating optimal innate immune responses.


The Journal of Allergy and Clinical Immunology | 2012

Prenatal and early-life exposures alter expression of innate immunity genes: The PASTURE cohort study

Georg Loss; S. Bitter; Johanna Wohlgensinger; Remo Frei; Caroline Roduit; Jon Genuneit; Juha Pekkanen; Marjut Roponen; Maija-Riitta Hirvonen; Jean-Charles Dalphin; Marie-Laure Dalphin; Josef Riedler; Erika von Mutius; Juliane Weber; Michael Kabesch; Sven Michel; Charlotte Braun-Fahrländer; Roger Lauener

BACKGROUND There is evidence that gene expression of innate immunity receptors is upregulated by farming-related exposures. OBJECTIVE We sought to determine environmental and nutritional exposures associated with the gene expression of innate immunity receptors during pregnancy and the first year of a childs life. METHODS For the Protection Against Allergy: Study in Rural Environments (PASTURE) birth cohort study, 1133 pregnant women were recruited in rural areas of Austria, Finland, France, Germany, and Switzerland. mRNA expression of the Toll-like receptor (TLR) 1 through TLR9 and CD14 was assessed in blood samples at birth (n= 938) and year 1 (n= 752). Environmental exposures, as assessed by using questionnaires and a diary kept during year 1, and polymorphisms in innate receptor genes were related to gene expression of innate immunity receptors by using ANOVA and multivariate regression analysis. RESULTS Gene expression of innate immunity receptors in cord blood was overall higher in neonates of farmers (P for multifactorial multivariate ANOVA= .041), significantly so for TLR7 (adjusted geometric means ratio [aGMR], 1.15; 95% CI, 1.02-1.30) and TLR8 (aGMR, 1.15; 95% CI, 1.04-1.26). Unboiled farm milk consumption during the first year of life showed the strongest association with mRNA expression at year 1, taking the diversity of other foods introduced during that period into account: TLR4 (aGMR, 1.22; 95% CI, 1.03-1.45), TLR5 (aGMR, 1.19; 95% CI, 1.01-1.41), and TLR6 (aGMR, 1.20; 95% CI, 1.04-1.38). A previously described modification of the association between farm milk consumption and CD14 gene expression by the single nucleotide polymorphism CD14/C-1721T was not found. CONCLUSION Farming-related exposures, such as raw farm milk consumption, that were previously reported to decrease the risk for allergic outcomes were associated with a change in gene expression of innate immunity receptors in early life.


PLOS ONE | 2013

Immunomodulation by Bifidobacterium infantis 35624 in the murine lamina propria requires retinoic acid-dependent and independent mechanisms

Patrycja Konieczna; Ruth Ferstl; Mario Ziegler; Remo Frei; Dirk Nehrbass; Roger Lauener; Cezmi A. Akdis; Liam O'Mahony

Appropriate dendritic cell processing of the microbiota promotes intestinal homeostasis and protects against aberrant inflammatory responses. Mucosal CD103+ dendritic cells are able to produce retinoic acid from retinal, however their role in vivo and how they are influenced by specific microbial species has been poorly described. Bifidobacterium infantis 35624 (B. infantis) feeding to mice resulted in increased numbers of CD103+retinaldehyde dehydrogenase (RALDH)+ dendritic cells within the lamina propria (LP). Foxp3+ lymphocytes were also increased in the LP, while TH1 and TH17 subsets were decreased. 3,7-dimethyl-2,6-octadienal (citral) treatment of mice blocked the increase in CD103+RALDH+ dendritic cells and the decrease in TH1 and TH17 lymphocytes, but not the increase in Foxp3+ lymphocytes. B. infantis reduced the severity of DSS-induced colitis, associated with decreased TH1 and TH17 cells within the LP. Citral treatment confirmed that these effects were RALDH mediated. RALDH+ dendritic cells decreased within the LP of control inflamed animals, while RALDH+ dendritic cells numbers were maintained in the LP of B. infantis-fed mice. Thus, CD103+RALDH+ LP dendritic cells are important cellular targets for microbiota-associated effects on mucosal immunoregulation.

Collaboration


Dive into the Remo Frei's collaboration.

Top Co-Authors

Avatar

Roger Lauener

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar

Josef Riedler

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charlotte Braun-Fahrländer

Swiss Tropical and Public Health Institute

View shared research outputs
Top Co-Authors

Avatar

Jean-Charles Dalphin

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Juha Pekkanen

National Institute for Health and Welfare

View shared research outputs
Top Co-Authors

Avatar

Cezmi A. Akdis

Swiss Institute of Allergy and Asthma Research

View shared research outputs
Top Co-Authors

Avatar

Liam O'Mahony

Swiss Institute of Allergy and Asthma Research

View shared research outputs
Top Co-Authors

Avatar

Ruth Ferstl

Swiss Institute of Allergy and Asthma Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge