Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Remus T. Dame is active.

Publication


Featured researches published by Remus T. Dame.


Molecular Microbiology | 2005

The role of nucleoid-associated proteins in the organization and compaction of bacterial chromatin

Remus T. Dame

The bacterial chromosomal DNA is folded into a compact structure called nucleoid. The shape and size of this ‘body’ is determined by a number of factors. Major players are DNA supercoiling, macromolecular crowding and architectural proteins, associated with the nucleoid, which are the topic of this MicroReview. Although many of these proteins were identified more than 25 years ago, the molecular mechanisms involved in the organization and compaction of DNA have only started to become clear in recent years. Many of these new insights can be attributed to the use of recently developed biophysical techniques.


Nature | 2006

Bacterial chromatin organization by H-NS protein unravelled using dual DNA manipulation

Remus T. Dame; Maarten C. Noom; Gijs J. L. Wuite

Both prokaryotic and eukaryotic organisms contain DNA bridging proteins, which can have regulatory or architectural functions. The molecular and mechanical details of such proteins are hard to obtain, in particular if they involve non-specific interactions. The bacterial nucleoid consists of hundreds of DNA loops, shaped in part by non-specific DNA bridging proteins such as histone-like nucleoid structuring protein (H-NS), leucine-responsive regulatory protein (Lrp) and SMC (structural maintenance of chromosomes) proteins. We have developed an optical tweezers instrument that can independently handle two DNA molecules, which allows the systematic investigation of protein-mediated DNA–DNA interactions. Here we use this technique to investigate the abundant non-specific nucleoid-associated protein H-NS, and show that H-NS is dynamically organized between two DNA molecules in register with their helical pitch. Our optical tweezers also allow us to carry out dynamic force spectroscopy on non-specific DNA binding proteins and thereby to determine an energy landscape for the H-NS–DNA interaction. Our results explain how the bacterial nucleoid can be effectively compacted and organized, but be dynamic in nature and accessible to DNA-tracking motor enzymes. Finally, our experimental approach is widely applicable to other DNA bridging proteins, as well as to complex DNA interactions involving multiple DNA molecules.


Critical Reviews in Biochemistry and Molecular Biology | 2008

The Major Architects of Chromatin: Architectural Proteins in Bacteria, Archaea and Eukaryotes

M.S. Luijsterburg; Malcolm F. White; R. van Driel; Remus T. Dame

The genomic DNA of all organisms across the three kingdoms of life needs to be compacted and functionally organized. Key players in these processes are DNA supercoiling, macromolecular crowding and architectural proteins that shape DNA by binding to it. The architectural proteins in bacteria, archaea and eukaryotes generally do not exhibit sequence or structural conservation especially across kingdoms. Instead, we propose that they are functionally conserved. Most of these proteins can be classified according to their architectural mode of action: bending, wrapping or bridging DNA. In order for DNA transactions to occur within a compact chromatin context, genome organization cannot be static. Indeed chromosomes are subject to a whole range of remodeling mechanisms. In this review, we discuss the role of (i) DNA supercoiling, (ii) macromolecular crowding and (iii) architectural proteins in genome organization, as well as (iv) mechanisms used to remodel chromosome structure and to modulate genomic activity. We conclude that the underlying mechanisms that shape and remodel genomes are remarkably similar among bacteria, archaea and eukaryotes.


Journal of Bacteriology | 2005

DNA Bridging: a Property Shared among H-NS-Like Proteins

Remus T. Dame; Martijn S. Luijsterburg; Evelyne Krin; Philippe N. Bertin; Rolf Wagner; Gijs J. L. Wuite

The nucleoid-associated protein H-NS is thought to play an essential role in the organization of bacterial chromatin in Escherichia coli. Homologues, often with very low sequence identity, are found in most gram-negative bacteria. Microscopic analysis reveals that, despite limited sequence identity, their structural organization results in similar DNA binding properties.


FEBS Letters | 2002

HU: promoting or counteracting DNA compaction?

Remus T. Dame; Nora Goosen

The role of HU in Escherichia coli as both a protein involved in DNA compaction and as a protein with regulatory function seems to be firmly established. However, a critical look at the available data reveals that this is not true for each of the proposed roles of this protein. The role of HU as a regulatory or accessory protein in a number of systems has been thoroughly investigated and in many cases has been largely elucidated. However, almost 30 years after its discovery, convincing evidence for the proposed role of HU in DNA compaction is still lacking. Here we present an extensive literature survey of the available data which, in combination with novel microscopic insights, suggests that the role of HU could be the opposite as well. The protein is likely to play an architectural role, but instead of being responsible for DNA compaction it could be involved in antagonising compaction by other proteins such as H‐NS.


Biochimie | 2001

Structural basis for preferential binding of H-NS to curved DNA.

Remus T. Dame; Claire Wyman; Nora Goosen

The Escherichia coli H-NS protein is a nucleoid-associated protein involved in transcription regulation and DNA compaction. H-NS exerts its role in DNA condensation by non-specific interactions with DNA. With respect to transcription regulation preferential binding sites in the promoter regions of different genes have been reported. In this paper we describe the analysis of H-NS-DNA complexes on a preferred H-NS binding site by atomic force microscopy. On the basis of these data we present a model for the specific recognition of DNA by H-NS as a function of DNA curvature.


Current Biology | 2007

H-NS promotes looped domain formation in the bacterial chromosome

Maarten C. Noom; William Wiley Navarre; Taku Oshima; Gijs J. L. Wuite; Remus T. Dame

The bacterial chromosome is organized into loops, which constitute topologically isolated domains. It is unclear which proteins are responsible for the formation of the topological barriers between domains. The abundant DNA-binding histone-like nucleoid structuring protein (H-NS) is a key player in the organization and compaction of bacterial chromosomes [1,2]. The protein acts by bridging DNA duplexes [3], thus allowing for the formation of DNA loops. Here, genome-wide studies of H-NS binding suggest that this protein is directly involved in the formation or maintenance of topological domain barriers.


PLOS Genetics | 2011

Chromosomal Macrodomains and Associated Proteins: Implications for DNA Organization and Replication in Gram Negative Bacteria

Remus T. Dame; Olga J. Kalmykowa; David C. Grainger

The Escherichia coli chromosome is organized into four macrodomains, the function and organisation of which are poorly understood. In this review we focus on the MatP, SeqA, and SlmA proteins that have recently been identified as the first examples of factors with macrodomain-specific DNA-binding properties. In particular, we review the evidence that these factors contribute towards the control of chromosome replication and segregation by specifically targeting subregions of the genome and contributing towards their unique properties. Genome sequence analysis of multiple related bacteria, including pathogenic species, reveals that macrodomain-specific distribution of SeqA, SlmA, and MatP is conserved, suggesting common principles of chromosome organisation in these organisms. This discovery of proteins with macrodomain-specific binding properties hints that there are other proteins with similar specificity yet to be unveiled. We discuss the roles of the proteins identified to date as well as strategies that may be employed to discover new factors.


Nature Communications | 2012

Alba shapes the archaeal genome using a delicate balance of bridging and stiffening the DNA

Niels Laurens; Rosalie P.C. Driessen; Iddo Heller; Daan Vorselen; Maarten C. Noom; Felix J.H. Hol; Malcolm F. White; Remus T. Dame; Gijs J. L. Wuite

Architectural proteins have an important role in shaping the genome and act as global regulators of gene expression. How these proteins jointly modulate genome plasticity is largely unknown. In archaea, one of the most abundant proteins, Alba, is considered to have a key role in organizing the genome. Here we characterize the multimodal architectural properties and interplay of the Alba1 and Alba2 proteins using single-molecule imaging and manipulation techniques. We demonstrate that the two paralogues can bridge and rigidify DNA and that the interplay between the two proteins influences the balance between these effects. Our data yield a structural model that explains the multimodal behaviour of Alba proteins and its impact on genome folding.


Nature Reviews Microbiology | 2015

The interplay between nucleoid organization and transcription in archaeal genomes

Eveline Peeters; Rosalie P.C. Driessen; Finn Werner; Remus T. Dame

The archaeal genome is organized by either eukaryotic-like histone proteins or bacterial-like nucleoid-associated proteins. Recent studies have revealed novel insights into chromatin dynamics and their effect on gene expression in archaeal model organisms. In this Progress article, we discuss the interplay between chromatin proteins, such as histones and Alba, and components of the basal transcription machinery, as well as between chromatin structure and gene-specific transcription factors in archaea. Such an interplay suggests that chromatin might have a role in regulating gene expression on both a global and a gene-specific level. Moreover, several archaeal transcription factors combine a global gene regulatory role with an architectural role, thus contributing to chromatin organization and compaction, as well as gene expression. We describe the emerging principles underlying how these factors cooperate in nucleoid structuring and gene regulation.

Collaboration


Dive into the Remus T. Dame's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claire Wyman

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge