Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rémy Amalvict is active.

Publication


Featured researches published by Rémy Amalvict.


Antimicrobial Agents and Chemotherapy | 2009

Plasmodium falciparum Na+/H+ Exchanger 1 Transporter Is Involved in Reduced Susceptibility to Quinine

Maud Henry; Sébastien Briolant; Agnès Zettor; Stéphane Pelleau; Meïli Baragatti; Eric Baret; Joel Mosnier; Rémy Amalvict; Thierry Fusai; Christophe Rogier; Bruno Pradines

ABSTRACT Polymorphisms in the Plasmodium falciparum crt (Pfcrt), Pfmdr1, and Pfmrp genes were not significantly associated with quinine (QN) 50% inhibitory concentrations (IC50s) in 23 strains of Plasmodium falciparum. An increased number of DNNND repeats in Pfnhe-1 microsatellite ms4760 was associated with an increased IC50 of QN (P = 0.0007). Strains with only one DNNND repeat were more susceptible to QN (mean IC50 of 154 nM). Strains with two DNNND repeats had intermediate susceptibility to QN (mean IC50 of 548 nM). Strains with three DNNND repeats had reduced susceptibility to QN (mean IC50 of 764 nM). Increased numbers of NHNDNHNNDDD repeats were associated with a decreased IC50 of QN (P = 0.0020). Strains with profile 7 for Pfnhe-1 ms4760 (ms4760-7) were significantly associated with reduced QN susceptibility (mean IC50 of 764 nM). The determination of DNNND and NHNDNHNNDDD repeats in Pfnhe-1 ms4760 could be a good marker of QN resistance and provide an attractive surveillance method to monitor temporal trends in P. falciparum susceptibility to QN. The validity of the markers should be further supported by analyzing more isolates.


Journal of Clinical Microbiology | 2006

Prevalence of In Vitro Resistance to Eleven Standard or New Antimalarial Drugs among Plasmodium falciparum Isolates from Pointe-Noire, Republic of the Congo

Bruno Pradines; Philippe Hovette; Thierry Fusai; Henri Léonard Atanda; Eric Baret; Philippe Cheval; Joel Mosnier; Alain Callec; Julien Cren; Rémy Amalvict; Jean Pierre Gardair; Christophe Rogier

ABSTRACT We determined the level of in vitro resistance of Plasmodium falciparum parasites to standard antimalarial drugs, such as chloroquine, quinine, amodiaquine, halofantrine, mefloquine, cycloguanil, and pyrimethamine, and to new compounds, such as dihydroartemisinin, doxycycline, atovaquone, and lumefantrine. The in vitro resistance to chloroquine reached 75.5%. Twenty-eight percent of the isolates were intermediate or had reduced susceptibility to quinine. Seventy-six percent and 96% of the tested isolates showed in vitro resistance or intermediate susceptibilities to cycloguanil and pyrimethamine, respectively. Only 2% of the parasites demonstrated in vitro resistance to monodesethylamodiaquine. No resistance was shown with halofantrine, lumefantrine, dihydroartemisinin, or atovaquone. Halofantrine, mefloquine, and lumefantrine demonstrated high correlation. No cross-resistance was identified between responses to monodesethyl-amodiaquine, dihydroartemisinin, atovaquone, and cycloguanil. Since the level of chloroquine resistance in vitro exceed an unacceptable upper limit, high rates of in vitro resistance to pyrimethamine and cycloguanil and diminution of the susceptibility to quinine, antimalarial drugs used in combination, such as amodiaquine, artemisinin derivatives, mefloquine, lumefantrine, or atovaquone, seem to be appropriate alternatives for the first line of treatment of acute, uncomplicated P. falciparum malaria.


Antimicrobial Agents and Chemotherapy | 2008

In Vitro Activity of Ferroquine Is Independent of Polymorphisms in Transport Protein Genes Implicated in Quinoline Resistance in Plasmodium falciparum

Maud Henry; Sébastien Briolant; Albin Fontaine; Joel Mosnier; Eric Baret; Rémy Amalvict; Thierry Fusai; Laurent Fraisse; Christophe Rogier; Bruno Pradines

ABSTRACT The in vitro activity of ferroquine (FQ) (SR97193), a 4-aminoquinoline antimalarial compound that contains a ferrocenic nucleus, against 15 Plasmodium falciparum strains was assessed and compared with those of chloroquine (CQ), quinine (QN), monodesethylamodiaquine (MDAQ), and mefloquine (MQ). These 15 strains were genotyped for polymorphisms in quinoline resistance-associated genes such as Pfcrt, Pfmdr1, Pfmrp, and Pfnhe-1. FQ was highly active against CQ-resistant parasites or in parasites with reduced susceptibility to QN, MDAQ, or MQ. Encouragingly, we did not find a correlation between responses to FQ and those to other quinoline drugs. These results suggest that no cross-resistance exits between FQ and CQ or quinoline antimalarial drugs. Mutations in codons 74, 75, 76, 220, 271, 326, 356, and 371 of the Pfcrt gene; codons 86, 184, 1034, 1042, and 1246 of the Pfmdr1 gene; and codons 191 and 437 of the Pfmrp gene were not significantly associated with P. falciparum susceptibility to FQ. Neither the number of ms4760 DNNND or DDNHNDNHNN repeats in Pfnhe-1 nor the profile of ms4760 was significantly associated with the FQ in vitro response. These data suggest the FQ may not interact with transport proteins in quinoline-resistant parasites. The present results justify further clinical trials of FQ in multidrug resistance areas.


Malaria Journal | 2014

Limited polymorphisms in k13 gene in Plasmodium falciparum isolates from Dakar, Senegal in 2012–2013

Marylin Torrentino-Madamet; Bécaye Fall; Nicolas Benoit; Cheikhou Camara; Rémy Amalvict; Mansour Fall; Pierre Dionne; Kadidiatou Ba Fall; Aminata Nakoulima; Bakary Diatta; Yaya Diémé; Didier Ménard; Boubacar Wade; Bruno Pradines

BackgroundThe emergence of Plasmodium falciparum resistance to artemisinin and its derivatives, manifested as delayed parasite clearance following the treatment, has developed in Southeast Asia. The spread of resistance to artemisinin from Asia to Africa may be catastrophic for malaria control and elimination worldwide. Recently, mutations in the propeller domain of the Kelch 13 (k13) gene (PF3D71343700) were associated with in vitro resistance to artemisinin and with delayed clearance after artemisinin treatment in southern Asia. The aim of the study was to characterize the genetic variability of k13 and to evaluate the molecular resistance to artemisinin for the first time in Senegal.MethodsPlasmodium falciparum isolates were collected from 138 malaria patients in Dakar and its districts during the rainy season of October 2012 to January 2013 at the Hôpital Principal de Dakar. The k13 gene was amplified using nested PCR and sequenced.ResultsA very limited variability within the k13 gene in Senegalese P. falciparum isolates was identified. No polymorphism was detected in the six k13-propeller blades. Only two mutations, T149S (6.3%) and K189T (42.2%), and one (N) or two (NN) asparagine insertion at the codon 142 (4.7 and 6.3%, respectively) were detected in the Plasmodium/Apicomplexa-specific domain. None of the polymorphisms associated with artemisinin resistance in Southeast Asia was detected in the 138 P. falciparum from Dakar.DiscussionThe present data do not suggest widespread artemisinin resistance in Dakar in 2012–2013. Notably, the C580Y, R539T or Y493H substitutions that were associated with in vitro resistance or delayed parasite clearance in Southeast Asia were not observed in Dakar, nor were any of the polymorphisms observed in parasites from Southeast Asia, nor the M476I mutation that was selected in vitro with artemisinin pressure in a African parasite line.


Antimicrobial Agents and Chemotherapy | 2010

Absence of Association between Piperaquine In Vitro Responses and Polymorphisms in the pfcrt, pfmdr1, pfmrp, and pfnhe Genes in Plasmodium falciparum

Sébastien Briolant; Maud Henry; Claude Oeuvray; Rémy Amalvict; Eric Baret; Eric Didillon; Christophe Rogier; Bruno Pradines

ABSTRACT We have analyzed the profiles of 23 of Plasmodium falciparum strains for their in vitro chemosusceptibilities to piperaquine (PPQ), dihydroartemisinin (DHA), chloroquine, monodesethylamodiaquine, quinine, mefloquine, lumefantrine, atovaquone, pyrimethamine, and doxycycline (DOX) in association with polymorphisms in genes involved in quinoline resistance (Plasmodium falciparum crt [pfcrt], pfmdr1, pfmrp, and pfnhe). The 50% inhibitory concentrations (IC50s) for PPQ ranged from 29 to 98 nM (geometric mean = 57.8 nM, 95% confidence interval [CI] = 51 to 65) and from 0.4 to 5.8 nM for DHA (geometric mean = 1.8 nM, 95% CI = 1.4 to 2.3). We found a significant positive correlation between the responses to PPQ and DHA (r2 = 0.17; P = 0.0495) and between the responses to PPQ and DOX (r2 = 0.41; P = 0.001). We did not find a significant association between the PPQ IC50 (0.0525 < P < 0.9247) or the DHA IC50 (0.0138 < P < 0.9018) and polymorphisms in the pfcrt, pfmdr1, pfmrp, and pfnhe-1 genes. There was an absence of cross-resistance with quinolines, and the IC50s for PPQ and DHA were found to be unrelated to mutations in the pfcrt, pfmdr1, pfmrp, and pfnhe-1 transport protein genes, which are involved in quinoline antimalarial drug resistance. These results confirm the interest in and the efficacy of the combination of PPQ and DHA for areas in which parasites are resistant to chloroquine or other quinolines.


Malaria Journal | 2011

In vitro susceptibility to quinine and microsatellite variations of the Plasmodium falciparum Na+/H+ exchanger (Pfnhe-1) gene: the absence of association in clinical isolates from the Republic of Congo

Sébastien Briolant; Stéphane Pelleau; Hervé Bogreau; Philippe Hovette; Agnès Zettor; Jacky Castello; Eric Baret; Rémy Amalvict; Christophe Rogier; Bruno Pradines

BackgroundQuinine is still recommended as an effective therapy for severe cases of Plasmodium falciparum malaria, but the parasite has developed resistance to the drug in some cases. Investigations into the genetic basis for quinine resistance (QNR) suggest that QNR is complex and involves several genes, with either an additive or a pairwise effect. The results obtained when assessing one of these genes, the plasmodial Na+/H+ exchanger, Pfnhe-1, were found to depend upon the geographic origin of the parasite strain. Most of the associations identified have been made in Asian strains; in contrast, in African strains, the influence of Pfnhe on QNR is not apparent. However, a recent study carried out in Kenya did show a significant association between a Pfnhe polymorphism and QNR. As genetic differences may exist across the African continent, more field data are needed to determine if this association exists in other African regions. In the present study, association between Pfnhe and QNR is investigated in a series of isolates from central Africa.MethodsThe sequence analysis of the polymorphisms at the Pfnhe-1 ms4760 microsatellite and the evaluation of in vitro quinine susceptibility (by isotopic assay) were conducted in 74 P. falciparum isolates from the Republic of Congo.ResultsPolymorphisms in the number of DNNND or NHNDNHNNDDD repeats in the Pfnhe-1 ms4760 microsatellite were not associated with quinine susceptibility.ConclusionsThe polymorphism in the microsatellite ms4760 in Pfnhe-1 that cannot be used to monitor quinine response in the regions of the Republic of Congo, where the isolates came from. This finding suggests that there exists a genetic background associated with geographic area for the association that will prevent the use of Pfnhe as a molecular marker for QNR. The contribution of Pfnhe to the in vitro response to quinine remains to be assessed in other regions, including in countries with different levels of drug pressure.


Antimicrobial Agents and Chemotherapy | 2011

In Vitro Activity of Proveblue (Methylene Blue) on Plasmodium falciparum Strains Resistant to Standard Antimalarial Drugs

Aurélie Pascual; Maud Henry; Sébastien Briolant; Serge Charras; Eric Baret; Rémy Amalvict; Emilie Huyghues des Etages; Michel Feraud; Christophe Rogier; Bruno Pradines

ABSTRACT The geometric mean 50% inhibitory concentration (IC50) for Proveblue, a methylene blue complying with the European Pharmacopoeia, was more active on 23 P. falciparum strains than chloroquine, quinine, mefloquine, monodesethylamodiaquine, and lumefantrine. We did not find significant associations between the Proveblue IC50 and polymorphisms in the pfcrt, pfmdr1, pfmdr2, pfmrp, and pfnhe-1 genes or the copy numbers of the pfmdr1 and pfmdr2 genes, all of which are involved in antimalarial resistance.


Antimicrobial Agents and Chemotherapy | 2009

Atorvastatin Is a Promising Partner for Antimalarial Drugs in Treatment of Plasmodium falciparum Malaria

Véronique Parquet; Sébastien Briolant; Marylin Torrentino-Madamet; Maud Henry; Lionel Almeras; Rémy Amalvict; Eric Baret; Thierry Fusai; Christophe Rogier; Bruno Pradines

ABSTRACT Atorvastatin (AVA) is a 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor. AVA exposure resulted in the reduced in vitro growth of 22 Plasmodium falciparum strains, with the 50% inhibitory concentrations (IC50s) ranging from 2.5 μM to 10.8 μM. A significant positive correlation was found between the strains’ responses to AVA and mefloquine (r = 0.553; P = 0.008). We found no correlation between the responses to AVA and to chloroquine, quinine, monodesethylamodiaquine, lumefantrine, dihydroartemisinin, atovaquone, or doxycycline. These data could suggest that the mechanism of AVA uptake and/or the mode of action of AVA is different from those for other antimalarial drugs. The IC50s for AVA were unrelated to the occurrence of mutations in the transport protein genes involved in quinoline antimalarial drug resistance, such as the P. falciparum crt, mdr1, mrp, and nhe-1 genes. Therefore, AVA can be ruled out as a substrate for the transport proteins (CRT, Pgh1, and MRP) and is not subject to the pH modification induced by the P. falciparum NHE-1 protein. The absence of in vitro cross-resistance between AVA and chloroquine, quinine, mefloquine, monodesethylamodiaquine, lumefantrine, dihydroartemisinin, atovaquone, and doxycycline argues that these antimalarial drugs could potentially be paired with AVA as a treatment for malaria. In conclusion, the present observations suggest that AVA is a good candidate for further studies on the use of statins in association with drugs known to have activities against the malaria parasite.


Antimicrobial Agents and Chemotherapy | 2012

Proveblue (Methylene Blue) as an Antimalarial Agent: In Vitro Synergy with Dihydroartemisinin and Atorvastatin

Jérôme Dormoi; Aurélie Pascual; Sébastien Briolant; Rémy Amalvict; Serge Charras; Eric Baret; Emilie Huyghues des Etages; Michel Feraud; Bruno Pradines

Proveblue (international patent PCT/FR/2007/001193), which is a methylene blue preparation that complies with the European Pharmacopoeia and contains limited organic impurities and heavy metals of recognized toxicity, has previously been demonstrated to possess in vitro antimalarial activity (at a


Malaria Journal | 2010

Absence of association between pyronaridine in vitro responses and polymorphisms in genes involved in quinoline resistance in Plasmodium falciparum

Bruno Pradines; Sébastien Briolant; Maud Henry; Claude Oeuvray; Eric Baret; Rémy Amalvict; Eric Didillon; Christophe Rogier

BackgroundThe aim of the present work was to assess the in vitro cross-resistance of pyronaridine with other quinoline drugs, artesunate and several other commonly used anti-malarials and to evaluate whether decreased susceptibility to pyronaridine could be associated with genetic polymorphisms in genes involved in reduced quinoline susceptibility, such as pfcrt, pfmdr1, pfmrp and pfnhe.MethodsThe in vitro chemosusceptibility profiles of 23 strains of Plasmodium falciparum were analysed by the standard 42-hour 3H-hypoxanthine uptake inhibition method for pyronaridine, artesunate, chloroquine, monodesethylamodiaquine, quinine, mefloquine, lumefantrine, atovaquone, pyrimethamine and doxycycline. Genotypes were assessed for pfcrt, pfmdr1, pfnhe-1 and pfmrp genes.ResultsThe IC50 values for pyronaridine ranged from 15 to 49 nM (geometric mean = 23.1 nM). A significant positive correlation was found between responses to pyronaridine and responses to artesunate (r2 = 0.20; P = 0.0317) but too low to suggest cross-resistance. No significant correlation was found between pyronaridine IC50 and responses to other anti-malarials. Significant associations were not found between pyronaridine IC50 and polymorphisms in pfcrt, pfmdr1, pfmrp or pfnhe-1.ConclusionThere was an absence of cross-resistance between pyronaridine and quinolines, and the IC50 values for pyronaridine were found to be unrelated to mutations in the transport protein genes pfcrt, pfmdr1, pfmrp or pfnhe-1, known to be involved in quinoline resistance. These results confirm the interest and the efficacy of the use of a combination of pyronaridine and artesunate in areas in which parasites are resistant to quinolines.

Collaboration


Dive into the Rémy Amalvict's collaboration.

Top Co-Authors

Avatar

Bruno Pradines

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Baret

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicolas Benoit

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Joel Mosnier

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thierry Fusai

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge