Rémy Pasquet
International Centre of Insect Physiology and Ecology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rémy Pasquet.
Theoretical and Applied Genetics | 2002
S. Coulibaly; Rémy Pasquet; Roberto Papa; Paul Gepts
Abstract Amplified fragment length polymorphisms (AFLPs) were used to evaluate genetic relationships within cowpea [Vigna unguiculata (L.) Walp.] and to assess the organization of its genetic diversity. Nei’s genetic distances were estimated for a total of 117 accessions including 47 domesticated cowpea (ssp. unguiculata var. unguiculata), 52 wild and weedy annuals (ssp. unguiculata var. spontanea), as well as 18 perennial accessions of the wild subspecies pubescens, tenuis and alba. AFLP variation was also used to study genetic variation among and within domesticated and wild accessions based on their geographical origin (western, eastern and southern Africa). Wild annual cowpea (var. spontanea) (HT=0.175) was more diverse than domesticated cowpea (HT=0.108). Wild cowpea was more diverse in eastern (HS=0.168) than in western Africa (HS=0.129), suggesting an eastern African origin for the wild taxon. The AFLP data were consistent with earlier findings of a unique domestication event in cowpea in the northern part of the continent and suggested that domestication in eastern or southern Africa was unlikely. It did not allow a more precise localization of domestication due to extensive gene flow between wild and domesticated forms that has led to a large crop-weed complex distributed over the entire African continent. In addition, wild materials from northeastern Africa are still lacking. Overall, the superiority of the AFLP technique over isozymes resided in its ability to uncover variation both within domesticated and wild cowpea, and should be a powerful tool once additional wild material becomes available.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Rémy Pasquet; Alexis Peltier; Matthew B. Hufford; Emeline Oudin; Jonathan Saulnier; Lénaic Paul; Jette T. Knudsen; Hans R. Herren; Paul Gepts
Foraging range, an important component of bee ecology, is of considerable interest for insect-pollinated plants because it determines the potential for outcrossing among individuals. However, long-distance pollen flow is difficult to assess, especially when the plant also relies on self-pollination. Pollen movement can be estimated indirectly through population genetic data, but complementary data on pollinator flight distances is necessary to validate such estimates. By using radio-tracking of cowpea pollinator return flights, we found that carpenter bees visiting cowpea flowers can forage up to 6 km from their nest. Foraging distances were found to be shorter than the maximum flight range, especially under adverse weather conditions or poor reward levels. From complete flight records in which bees visited wild and domesticated populations, we conclude that bees can mediate gene flow and, in some instances, allow transgene (genetically engineered material) escape over several kilometers. However, most between-flower flights occur within plant patches, while very few occur between plant patches.
Genetic Resources and Crop Evolution | 2004
Fana Sylla Ba; Rémy Pasquet; Paul Gepts
The present study, using RAPD analysis, was undertaken to characterize genetic variation in domesticated cowpea and its wild progenitor, as well as their relationships. The materials used consisted of 26 domesticated accessions, including accessions from each of the five cultivar-group, and 30 wild/weedy accessions, including accessions from West, East and southern Africa. A total of 28 primers generated 202 RAPD bands. One hundred and eight bands were polymorphic among the domesticated compared to 181 among wild/weedy cowpea accessions. Wild accessions were more diverse in East Africa, which is the likely area of origin of V. unguiculata var. spontanea. Var. spontanea is supposed to have spread westward and southward, with a loss of variability, loss counterbalanceed in southern Africa by introgressions with local perennial subspecies. Although the variabilty of domesticated cowpea was the highest ever recorded, cultivar-groups were poorly resolved, and several results obtained with isozyme data were not confirmed here. However primitive cultivars were more diverse than evolved cultivars, which still suggests two consecutive bottlenecks within domesticated cowpea evolution. As isozymes and AFLP markers, although with a larger number of markers, RAPD data confirmed the single domestication hypothesis, the gap between wild and domesticated cowpea, and the widespread introgression phenomena between wild and domesticated cowpea.
Theoretical and Applied Genetics | 1999
Rémy Pasquet
Abstract The cowpea [Vigna unguiculata (L.) Walp.] is a morphologically and genetically variable species composed of wild perennial, wild annual, and cultivated forms that are mainly used for edible seeds and pods. In this study, genetic variation in 199 germplasm accessions of wild and cultivated cowpea was evaluated using an allozyme analysis. The results from this survey showed that wild cowpea exhibits genetic variation perfectly fitted with the existing morphological classification. The cowpea gene-pool is characterized by its unusually large size. It encompasses taxa (ranked as subspecies) that could be considered as different species considering the high genetic distances observed between accessions belonging to different taxa. These subspecies can be classified into three groups characterized by their breeding systems: perennial outcrossers, perennial out-inbreds, and inbred annuals. Allozyme data confirm this grouping. Perennial outcrossers look primitive and are more remote from each other and from perennial out-inbreds. Within this large gene-pool, mainly made of perennial taxa, cultivated cowpeas (ssp. unguiculata var. unguiculata) form a genetically coherent group and are closely related to annual cowpeas (ssp. unguiculata var. spontanea) which may include the most likely progenitor of cultivated cowpeas.
Theoretical and Applied Genetics | 2000
Rémy Pasquet
Abstract A survey of allozyme variation in cultivar-groups of cowpea [Vigna unguiculata (L.) Walp.] was undertaken by examining 21 enzyme systems encoded by 36 loci in 271 accessions representing the five cultivar-groups. Very low levels of variation were found within accessions, which is typical of self-pollinating species. Little variation was also found among accessions. Compared with other legume crops, V. unguiculata is depauperate in allozyme variation. We found an average of 1.61 alleles per locus with 42% of the loci polymorphic and a total heterozygosity of 0.061. Of the variation present, 90% was found within cultivar-groups, while 10% was among cultivar-groups. Data analyses revealed continuous variation among cultivar-groups and geographic regions with the accessions failing to segregate into discrete morphophysiological or geographic clusters. However, evolved cultivar-groups (cv.-gr. Melanophthalmus and cv.-gr. Sesquipedalis) appear to be less diverse than their putative primitive cultivar-group progenitors. Due to the lack of availability of critical material, no clear center of origin can be established. However, the data presented suggest that Northeast Africa could be a possible center of domestication.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Matt C. Estep; Michael R. McKain; Dilys M. Vela Díaz; Jinshun Zhong; John G. Hodge; Trevor R. Hodkinson; Daniel J. Layton; Simon T. Malcomber; Rémy Pasquet; Elizabeth A. Kellogg
Significance Duplication of genomes following hybridization (allopolyploidy) is common among flowering plants, particularly in the grasses that cover vast areas of the world and provide food and fuel. Here, we find that genome duplication has occurred at a remarkable rate, accounting for at least a third of all speciation events in a group of about 1,200 species. Much of this genome duplication occurred during the expansion of the C4 grasslands in the Late Miocene. We find no evidence that allopolyploidy leads directly to a change in the net rate of diversification or correlates with the origin of novel morphological characters. However, as a mode of speciation, the frequency of allopolyploidization is surprisingly high. The role of polyploidy, particularly allopolyploidy, in plant diversification is a subject of debate. Whole-genome duplications precede the origins of many major clades (e.g., angiosperms, Brassicaceae, Poaceae), suggesting that polyploidy drives diversification. However, theoretical arguments and empirical studies suggest that polyploid lineages may actually have lower speciation rates and higher extinction rates than diploid lineages. We focus here on the grass tribe Andropogoneae, an economically and ecologically important group of C4 species with a high frequency of polyploids. A phylogeny was constructed for ca. 10% of the species of the clade, based on sequences of four concatenated low-copy nuclear loci. Genetic allopolyploidy was documented using the characteristic pattern of double-labeled gene trees. At least 32% of the species sampled are the result of genetic allopolyploidy and result from 28 distinct tetraploidy events plus an additional six hexaploidy events. This number is a minimum, and the actual frequency could be considerably higher. The parental genomes of most Andropogoneae polyploids diverged in the Late Miocene coincident with the expansion of the major C4 grasslands that dominate the earth today. The well-documented whole-genome duplication in Zea mays ssp. mays occurred after the divergence of Zea and Sorghum. We find no evidence that polyploidization is followed by an increase in net diversification rate; nonetheless, allopolyploidy itself is a major mode of speciation.
PLOS ONE | 2013
Pascal Campagne; Marlene Kruger; Rémy Pasquet; Bruno Le Rü; Johnnie Van den Berg
Transgenic crops expressing Bacillus thuringiensis (Bt) toxins have been adopted worldwide, notably in developing countries. In spite of their success in controlling target pests while allowing a substantial reduction of insecticide use, the sustainable control of these pest populations is threatened by the evolution of resistance. The implementation of the “high dose/refuge” strategy for managing insect resistance in transgenic crops aims at delaying the evolution of resistance to Bt crops in pest populations by promoting survival of susceptible insects. However, a crucial condition for the “high dose/refuge” strategy to be efficient is that the inheritance of resistance should be functionally recessive. Busseola fusca developed high levels of resistance to the Bt toxin Cry 1Ab expressed in Bt corn in South Africa. To test whether the inheritance of B . fusca resistance to the Bt toxin could be considered recessive we performed controlled crosses with this pest and evaluated its survival on Bt and non-Bt corn. Results show that resistance of B . fusca to Bt corn is dominant, which refutes the hypothesis of recessive inheritance. Survival on Bt corn was not lower than on non-Bt corn for both resistant larvae and the F1 progeny from resistant × susceptible parents. Hence, resistance management strategies of B . fusca to Bt corn must address non-recessive resistance.
Euphytica | 2007
Shravani Basu; Sean Mayes; M. R. Davey; Jeremy A. Roberts; Sayed Azam-Ali; Richard Mithen; Rémy Pasquet
Controlled crosses in bambara groundnut were attempted between a range of thirty-six bambara groundnut landraces (thirty domesticated (V. subterranea var. subterranea) and six wild (V. subterranea var. spontanea)). Ten F1 seed were produced. Of these, eight germinated producing F2 populations. On seed set, four populations could be unambiguously confirmed as true crosses by F3 seed coat colour. A single F2 population, derived from a domesticated landrace from Botswana (DipC; female parent) crossed with a wild accession collected in Cameroon (VSSP11; male parent) was used to study a range of agronomic and domestication traits. These included; days to emergence, days to flowering, internode (fourth) length at harvest, number of stems per plant, leaf area, Specific Leaf Area (SLA), Carbon Isotope Discrimination (CID), 100 seed weight, testa colour and eye pattern around the hilum. On the basis of variation for internode length and stems per plant, 14 small F3 families were selected and grown under field conditions to further investigate the genetic basis of the ‘spreading’ versus ‘bunched’ plant character, a major difference between wild and cultivated bambara groundnut. Results presented suggest that traits including leaf area, SLA, CID and 100 seed weight are controlled by several genes. In contrast, the variation for traits such as internode length, stems per plant, days to emergence and seed eye pattern around the hilum are likely to be under largely monogenic control. The results of this work are discussed in relation to the domestication of bambara groundnut.
GM crops & food | 2011
Joseph E. Huesing; Jörg Romeis; Norman C. Ellstrand; Alan Raybould; Richard L. Hellmich; Jeffrey D. Wolt; Jeffrey D. Ehlers; L. Clémentine Dabiré-Binso; Christian A. Fatokun; Karen E. Hokanson; Mohammad F. Ishiyaku; Venu Margam; Nompumelelo Obokoh; Jacob H. D. Mignouna; Francis Nang'ayo; Ouédraogo Jt; Rémy Pasquet; Barry R. Pittendrigh; Barbara A. Schaal; Jeff Stein; Manuele Tamò; Larry L. Murdock
Cowpea (Vigna unguiculata spp unguiculata) is adapted to the drier agro-ecological zones of West Africa where it is a major source of dietary protein and widely used as a fodder crop. Improving the productivity of cowpea can enhance food availability and security in West Africa. Insect predation – predominately from the legume pod borer (Maruca vitrata), flower thrips (Megalurothrips sjostedti) and a complex of pod-sucking bugs (e.g., Clavigralla spp) – is a major yield-limiting factor in West African cowpea production. Dramatic increases in yield are shown when M. vitrata is controlled with insecticides. However, availability, costs, and safety considerations limit pesticides as a viable option for boosting cowpea production. Development of Bt-cowpea through genetic modification (GM) to control the legume pod borer is a promising approach to cowpea improvement. Cowpea expressing the lepidopteran-active Cry1Ab protein from Bacillus thuringiensis is being developed as a first generation Bt-cowpea crop for West Africa. Appropriate stewardship of Bt-cowpea to assure its sustainability under West African conditions is critical to its successful development. A first step in this process is an environmental risk assessment to determine the likelihood and magnitude of adverse effects of the Cry1Ab protein on key environmental protection goals in West Africa. Here we describe the results of an expert panel convened in 2009 to develop the problem formulation phase for Bt-cowpea and to address specific issues around gene flow, non-target arthropods, and insect resistance management.
Genome | 2013
Mebeasealassie Andargie; Rémy Pasquet; Geoffrey M. Muluvi; Michael P. Timko
Flowering time is a major adaptive trait in plants and an important selection criterion in the breeding for genetic improvement of crop species. QTLs for the time of flower opening and days to flower were identified in a cross between a short duration domesticated cowpea (Vigna unguiculata (L.) Walp.) variety, 524B, and a relatively long duration wild accession, 219-01. A set of 159 F7 lines was grown under greenhouse conditions and scored for the flowering time associated phenotypes of time of flower opening and days to flower. Using a LOD threshold of 2.0, putative QTLs were identified and placed on a linkage map consisting of 202 SSR markers and four morphological loci. A total of five QTLs related to the time of flower opening were identified, accounting for 8.8%-29.8% of the phenotypic variation. Three QTLs for days to flower were detected, accounting for 5.7%-18.5% of the phenotypic variation. The major QTL of days to flower and time of flower opening were both mapped on linkage group 1. The QTLs identified in this study provide a strong foundation for further validation and fine mapping for developing an efficient way to restrain the gene flow between the cultivated and wild plants.