Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ren-Min Ma is active.

Publication


Featured researches published by Ren-Min Ma.


Nature | 2009

Plasmon lasers at deep subwavelength scale

Xiang Zhang; Volker J. Sorger; Rupert F. Oulton; Ren-Min Ma

Laser science has been successful in producing increasingly high-powered, faster and smaller coherent light sources. Examples of recent advances are microscopic lasers that can reach the diffraction limit, based on photonic crystals, metal-clad cavities and nanowires. However, such lasers are restricted, both in optical mode size and physical device dimension, to being larger than half the wavelength of the optical field, and it remains a key fundamental challenge to realize ultracompact lasers that can directly generate coherent optical fields at the nanometre scale, far beyond the diffraction limit. A way of addressing this issue is to make use of surface plasmons, which are capable of tightly localizing light, but so far ohmic losses at optical frequencies have inhibited the realization of truly nanometre-scale lasers based on such approaches. A recent theoretical work predicted that such losses could be significantly reduced while maintaining ultrasmall modes in a hybrid plasmonic waveguide. Here we report the experimental demonstration of nanometre-scale plasmonic lasers, generating optical modes a hundred times smaller than the diffraction limit. We realize such lasers using a hybrid plasmonic waveguide consisting of a high-gain cadmium sulphide semiconductor nanowire, separated from a silver surface by a 5-nm-thick insulating gap. Direct measurements of the emission lifetime reveal a broad-band enhancement of the nanowire’s exciton spontaneous emission rate by up to six times owing to the strong mode confinement and the signature of apparently threshold-less lasing. Because plasmonic modes have no cutoff, we are able to demonstrate downscaling of the lateral dimensions of both the device and the optical mode. Plasmonic lasers thus offer the possibility of exploring extreme interactions between light and matter, opening up new avenues in the fields of active photonic circuits, bio-sensing and quantum information technology.


Nature Materials | 2011

Room-temperature sub-diffraction-limited plasmon laser by total internal reflection

Ren-Min Ma; Rupert F. Oulton; Volker J. Sorger; Guy Bartal; Xiang Zhang

Plasmon lasers are a new class of coherent optical amplifiers that generate and sustain light well below its diffraction limit. Their intense, coherent and confined optical fields can enhance significantly light-matter interactions and bring fundamentally new capabilities to bio-sensing, data storage, photolithography and optical communications. However, metallic plasmon laser cavities generally exhibit both high metal and radiation losses, limiting the operation of plasmon lasers to cryogenic temperatures, where sufficient gain can be attained. Here, we present a room-temperature semiconductor sub-diffraction-limited laser by adopting total internal reflection of surface plasmons to mitigate the radiation loss, while using hybrid semiconductor-insulator-metal nanosquares for strong confinement with low metal loss. High cavity quality factors, approaching 100, along with strong λ/20 mode confinement, lead to enhancements of spontaneous emission rate by up to 18-fold. By controlling the structural geometry we reduce the number of cavity modes to achieve single-mode lasing.


Nanophotonics | 2012

Ultra-compact silicon nanophotonic modulator with broadband response

Volker J. Sorger; Norberto D. Lanzillotti-Kimura; Ren-Min Ma; Xiang Zhang

Abstract Electro-optic modulators have been identified as the key drivers for optical communication and signal processing. With an ongoing miniaturization of photonic circuitries, an outstanding aim is to demonstrate an on-chip, ultra-compact, electro-optic modulator without sacrificing bandwidth and modulation strength. While silicon-based electro-optic modulators have been demonstrated, they require large device footprints of the order of millimeters as a result of weak non-linear electro-optical properties. The modulation strength can be increased by deploying a high-Q resonator, however with the trade-off of significantly sacrificing bandwidth. Furthermore, design challenges and temperature tuning limit the deployment of such resonance-based modulators. Recently, novel materials like graphene have been investigated for electro-optic modulation applications with a 0.1 dB per micrometer modulation strength, while showing an improvement over pure silicon devices, this design still requires device lengths of tens of micrometers due to the inefficient overlap between the thin graphene layer, and the optical mode of the silicon waveguide. Here we experimentally demonstrate an ultra-compact, silicon-based, electro-optic modulator with a record-high 1 dB per micrometer extinction ratio over a wide bandwidth range of 1 μm in ambient conditions. The device is based on a plasmonic metal-oxide-semiconductor (MOS) waveguide, which efficiently concentrates the optical modes’ electric field into a nanometer thin region comprised of an absorption coefficient-tuneable indium-tin-oxide (ITO) layer. The modulation mechanism originates from electrically changing the free carrier concentration of the ITO layer which dramatically increases the loss of this MOS mode. The seamless integration of such a strong optical beam modulation into an existing silicon-on-insulator platform bears significant potential towards broadband, compact and efficient communication links and circuits.


Nature Nanotechnology | 2014

Explosives detection in a lasing plasmon nanocavity

Ren-Min Ma; Sadao Ota; Yimin Li; Sui Yang; Xiang Zhang

Perhaps the most successful application of plasmonics to date has been in sensing, where the interaction of a nanoscale localized field with analytes leads to high-sensitivity detection in real time and in a label-free fashion. However, all previous designs have been based on passively excited surface plasmons, in which sensitivity is intrinsically limited by the low quality factors induced by metal losses. It has recently been proposed theoretically that surface plasmon sensors with active excitation (gain-enhanced) can achieve much higher sensitivities due to the amplification of the surface plasmons. Here, we experimentally demonstrate an active plasmon sensor that is free of metal losses and operating deep below the diffraction limit for visible light. Loss compensation leads to an intense and sharp lasing emission that is ultrasensitive to adsorbed molecules. We validated the efficacy of our sensor to detect explosives in air under normal conditions and have achieved a sub-part-per-billion detection limit, the lowest reported to date for plasmonic sensors with 2,4-dinitrotoluene and ammonium nitrate. The selectivity between 2,4-dinitrotoluene, ammonium nitrate and nitrobenzene is on a par with other state-of-the-art explosives detectors. Our results show that monitoring the change of the lasing intensity is a superior method than monitoring the wavelength shift, as is widely used in passive surface plasmon sensors. We therefore envisage that nanoscopic sensors that make use of plasmonic lasing could become an important tool in security screening and biomolecular diagnostics.


Nano Letters | 2012

Multiplexed and Electrically Modulated Plasmon Laser Circuit

Ren-Min Ma; Xiaobo Yin; Rupert F. Oulton; Volker J. Sorger; Xiang Zhang

With unprecedented ability to localize electromagnetic field in time and space, the nanometer scale laser promises exceptionally broad scientific and technological innovation. However, as the laser cavity becomes subwavelength, the diffraction of light prohibits the directional emission, so-called the directionality, one of the fundamental attributes of the laser. Here, we have demonstrated a deep subwavelength waveguide embedded (WEB) plasmon laser that directs more than 70% of its radiation into an embedded semiconductor nanobelt waveguide with dramatically enhanced radiation efficiency. The unique configuration of WEB plasmon laser naturally integrates photonic and electronic functionality allowing both efficient electrical modulation and wavelength multiplexing. We have demonstrated a plasmonic circuit integrating five independently modulated multicolored plasmon laser sources multiplexed onto a single semiconductor nanobelt waveguide, illustrating the potential of plasmon lasers for large scale, ultradense photonic integration.


Advanced Materials | 2018

High‐Performance Single‐Crystalline Perovskite Thin‐Film Photodetector

Zhenqian Yang; Yuhao Deng; Xiaowei Zhang; Suo Wang; Hua-Zhou Chen; Sui Yang; Jacob B. Khurgin; Nicholas X. Fang; Xiang Zhang; Ren-Min Ma

The best performing modern optoelectronic devices rely on single-crystalline thin-film (SC-TF) semiconductors grown epitaxially. The emerging halide perovskites, which can be synthesized via low-cost solution-based methods, have achieved substantial success in various optoelectronic devices including solar cells, lasers, light-emitting diodes, and photodetectors. However, to date, the performance of these perovskite devices based on polycrystalline thin-film active layers lags behind the epitaxially grown semiconductor devices. Here, a photodetector based on SC-TF perovskite active layer is reported with a record performance of a 50 million gain, 70 GHz gain-bandwidth product, and a 100-photon level detection limit at 180 Hz modulation bandwidth, which as far as we know are the highest values among all the reported perovskite photodetectors. The superior performance of the device originates from replacing polycrystalline thin film by a thickness-optimized SC-TF with much higher mobility and longer recombination time. The results indicate that high-performance perovskite devices based on SC-TF may become competitive in modern optoelectronics.


Nature Communications | 2017

Unusual scaling laws for plasmonic nanolasers beyond the diffraction limit

Suo Wang; Xing-Yuan Wang; Bo Li; Hua-Zhou Chen; Yi-Lun Wang; Lun Dai; Rupert F. Oulton; Ren-Min Ma

Plasmonic nanolasers are a new class of amplifiers that generate coherent light well below the diffraction barrier bringing fundamentally new capabilities to biochemical sensing, super-resolution imaging, and on-chip optical communication. However, a debate about whether metals can enhance the performance of lasers has persisted due to the unavoidable fact that metallic absorption intrinsically scales with field confinement. Here, we report plasmonic nanolasers with extremely low thresholds on the order of 10 kW cm−2 at room temperature, which are comparable to those found in modern laser diodes. More importantly, we find unusual scaling laws allowing plasmonic lasers to be more compact and faster with lower threshold and power consumption than photonic lasers when the cavity size approaches or surpasses the diffraction limit. This clarifies the long-standing debate over the viability of metal confinement and feedback strategies in laser technology and identifies situations where plasmonic lasers can have clear practical advantage.Since the first proposal for plasmonic nanolasers there has been a debate about the limitations on performance posed by the inherent losses in metallic systems. Here, the authors compare over 100 plasmonic and photonic laser devices and find sub-wavelength plasmonic lasers to be advantageous.


Science Advances | 2017

Imaging the dark emission of spasers

Hua-Zhou Chen; Jia-Qi Hu; Suo Wang; Bo Li; Xing-Yuan Wang; Yilun Wang; Lun Dai; Ren-Min Ma

Spasers can serve as a pure surface plasmon generator with a coupling efficiency to plasmonic modes approaching 100%. Spasers are a new class of laser devices with cavity sizes free from optical diffraction limit. They are an emergent tool for various applications, including biochemical sensing, superresolution imaging, and on-chip optical communication. According to its original definition, a spaser is a coherent surface plasmon amplifier that does not necessarily generate a radiative photon output. However, to date, spasers have only been studied with scattered photons, and their intrinsic surface plasmon emission is a “dark” emission that is yet to be revealed because of its evanescent nature. We directly image the surface plasmon emission of spasers in spatial, momentum, and frequency spaces simultaneously. We demonstrate a nanowire spaser with a coupling efficiency to plasmonic modes of 74%. This coupling efficiency can approach 100% in theory when the diameter of the nanowire becomes smaller than 50 nm. Our results provide clear evidence of the surface plasmon amplifier nature of spasers and will pave the way for their various applications.


Chinese Physics B | 2016

Microscale vortex laser with controlled topological charge

Xing-Yuan Wang; Hua-Zhou Chen; Ying Li; Bo Li; Ren-Min Ma

A microscale vortex laser is a new type of coherent light source with small footprint that can directly generate vector vortex beams. However, a microscale laser with controlled topological charge, which is crucial for virtually any of its application, is still unrevealed. Here we present a microscale vortex laser with controlled topological charge. The vortex laser eigenmode was synthesized in a metamaterial engineered non-Hermitian micro-ring cavity system at exceptional point. We also show that the vortex laser cavity can operate at exceptional point stably to lase under optical pumping. The microscale vortex laser with controlled topological charge can serve as a unique and general building block for next-generation photonic integrated circuits and coherent vortex beam sources. The method we used here can be employed to generate lasing eigenmode with other complex functionalities.


conference on lasers and electro optics | 2014

Active surface plasmon sensor

Ren-Min Ma; Sadao Ota; Yimin Li; Sui Yang; Xiang Zhang

We have experimentally demonstrated an active plasmon sensor with sub-p.p.b. level explosive molecules detection. Loss compensation by gain in surface plasmon cavity enhanced the sensitivity significantly.

Collaboration


Dive into the Ren-Min Ma's collaboration.

Top Co-Authors

Avatar

Xiang Zhang

University of California

View shared research outputs
Top Co-Authors

Avatar

Volker J. Sorger

George Washington University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy Bartal

Technion – Israel Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaobo Yin

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge